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This document provides guidance and checklists for writing ODD descriptions of agent-based or 

other simulation models. It is based on the ODD version published in Grimm et al. (20XX) and 

earlier versions (Grimm et al. 2006, 2010; citations are provided at the end of this document). 

You can find further in-depth discussion of ODD and its elements in Grimm and Railsback 

(2005) and Railsback and Grimm (2019). While the book of Grimm and Railsback (2005) was 

written before ODD was established, its Chapter 5 provides the most comprehensive explanation 

of most of the Design concepts (Element 4), focused on ecological models but still useful for 

other kinds of models. The textbook of Railsback and Grimm (2019) dedicates many chapters to 

understanding elements of ODD and implementing them in models, using the same version of 

ODD as this document. 

The guidance follows the ODD format, addressing all seven elements. Each element starts with 

summary guidance on the element’s purpose and contents. These summaries also address 

common mistakes and questions. (Separate guidance and checklists are provided for each of the 

Design concepts of Element 4.) 

The checklist for each element follows the summary guidance. Each checklist is a list of topics 

that the ODD description should describe. You can produce an ODD description by addressing 

these topics completely and accurately.  

We also provide examples; these are at the end of the document, but hyperlinks just after each 

checklist take you to the examples for that element. (For hyperlinks in Word and PDF files, 

ALT+left arrow and ALT+right arrow act like the “go back” and “go forward” buttons in a web 

browser.) These examples were selected to illustrate the range of topics and issues that can be 

described in each element. We consider them good—but not always perfect—examples of what 

should be in ODD. If you find conflicts between an example and our guidance, please follow the 

guidance instead of the example. 

Please keep these goals of ODD in mind: 

• Making model descriptions complete and accurate: it should be possible to reproduce 

your entire model from its written description. 

• Standardizing descriptions for the benefit of users and reviewers: follow the protocol 

carefully, do not skip elements, and do not make ad hoc changes. It is good, not bad, to 

copy wording directly from this document. For example, the checklist for Element 1 
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includes describing “The patterns used as criteria for evaluating the model’s purpose” so 

we encourage you to start this description with exactly those words. (Of course, you 

should not copy text from the examples we provide from other people’s publications.) 

• Providing an overview first, with details in the last three elements. This guidance and the 

checklists ask for a great amount of information, but ODD is intended to be hierarchical. 

The “Overview” elements, 1-3, should provide an accurate overview, but full details of 

model processes should only appear in elements 5-7.  

• Encouraging modelers to think about why they made their design decisions. Describing 

the rationale for the design is not required by ODD but strongly recommended because it 

makes the model seem less arbitrary and because it encourages you to think about 

alternative model designs and select among them carefully. The checklists therefore 

include reminders to document rationale. 

We ask you to precede your model description with this text: “The model description follows 

the ODD (Overview, Design concepts, Details) protocol for describing individual- and 

agent-based models (Grimm et al. 2006), as updated by Grimm et al. (20XX).” The citation 

of Grimm et al. (2006) will allow us to quantify, review, and improve the use of ODD over time. 

The second citation tells readers which version of ODD you follow. 

The following Table of Contents is included to facilitate navigation, by using the hyperlinks in it. 
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1. Purpose and patterns  

Every model has to start from a clear question, problem, or hypothesis; readers cannot 

understand your model unless they understand its purpose. Therefore, ODD starts with a concise 

and specific statement of the purpose(s) for which the model was developed. The examples of 

Element 1 we provide below categorize model purposes into types of general purpose (e.g., 

prediction, explanation, description, theoretical exposition, illustration, analogy, and social 

learning). It is useful to first identify one or more of these general types of model purpose before 

stating the specific purpose. 

The “patterns” part of this element is new in this version of ODD. It helps clarify the model 

purpose by specifying the criteria you will use to decide when your model is realistic enough to 

be useful for its purpose. The patterns are observations, at the individual or system level, that are 

believed to be driven by the same processes, variables, etc. that are important for the model’s 

purpose. For some of the possible purposes, the model will be assumed useful only if it can 

reproduce the patterns. For other purposes, not reproducing the patterns can be an important 

result because it indicates that some mechanism is missing or inadequately represented. These 

patterns can be observations from the real system being modeled, obtained from data or 

literature. For models not based on a specific real system, the patterns are often general beliefs 

about how the system and its agents should behave. Including patterns in ODD is also a way to 

link it explicitly to “pattern-oriented modeling”, a set of strategies for designing and evaluating 

ABMs; this link is explained in the main text of Grimm et al. (20XX) and by Railsback and 

Grimm (2019). 

Guidance 

Make the purpose specific, addressing a clear question. The purpose statement should be 

specific enough to enable a reader to independently judge a model’s success at achieving this 

purpose as well as to serve as the primary “filter” for what is and is not in the model: ideally the 

model should only include entities and mechanisms that are necessary to meet its purpose. If the 

purpose statement is only general and unspecific, and especially if it lacks patterns for evaluating 

the model’s usefulness, then it will be difficult to justify (and make) model design decisions.  

Some ODDs state only that the model’s purpose is to “explore,” “investigate,” or “study” some 

system or phenomenon, which is not specific enough to assess the model or to determine what 

the model needs to contain. An imprecise purpose such as this is often an indication that the 

modeler simply assembled some mechanisms in an ABM and explored its results. Studies like 

this can be made more scientific by stating the purpose as a clear question such as “To test 

whether the mechanisms A, B, and C can explain the observed phenomena X, Y, and Z.” 

Include the higher-level purpose. The purpose statement should also clarify the model’s 

higher-level purpose: whether it is to develop understanding of the system, or to make specific 

predictions, etc. Different high-level purposes lead to different model designs. Use the general 

purposes from the examples of Element 1 we provide below as a guide. 
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Tie the purpose to the study’s primary results. One way to make this statement of model 

purpose specific enough is to explicitly consider what point you are trying to demonstrate with 

the model. The statement should allow the readers to clearly judge the extent to which the model 

is successful. This is closely related to the primary analysis you will conduct with the model. 

Think about the key graph(s) you will produce in your “Results” section, where you apply the 

model to your main research question. The model’s purpose should include producing the 

relationship shown in this graph. 

Define your terms. If you state that your model’s purpose is (for example) to “predict how the 

vulnerability of a community to flooding depends on public policy”, you still have not stated a 

clear model purpose. The term “vulnerability to flooding” could mean many things: drowning, 

travel delays, property damage, etc.; and “public policy” could refer to zoning, insurance, or 

emergency response. Be clear about exactly what inputs and results your model addresses. 

Be specific to this version of the model. To keep the description clear and focused, do not 

discuss potential future modifications of the model to new purposes or patterns. (Future plans 

might be described instead in the Discussion section of a publication.) However, if the same 

model is designed for multiple purposes, those purposes should be described even if they are not 

addressed in the current publication. 

Do not describe the model yet. Authors are often tempted to start describing how the model 

works here in the purpose statement, which is a mistake. Instead, address only the purpose here 

and then, in subsequent sections, you can tie the model’s design to the purpose by explaining 

why specific design decisions were necessary for the model’s purpose. 

Make this purpose statement independent. Model descriptions are typically published in 

research articles or reports that also include, in their introduction, a statement of the study’s 

purpose. This ODD element should be independent of any presentation of study purpose 

elsewhere in the same document, for several reasons: (a) an ODD description should always be 

complete and understandable by itself, and (b) re-stating the model purpose as specifically as 

possible always helps modelers (and readers) clarify what should be in the model. 

Use qualitative but testable patterns. Patterns useful for designing and evaluating ABMs are 

often general (observed at multiple locations or times) and qualitative. However, using patterns 

to evaluate a model requires that they be testable: you need a reproducible way to determine 

whether the model matches the pattern. Making patterns testable can be as simple as stating them 

as qualitative trends, e.g., that output X increases as variable A decreases. We generally 

discourage statistical definitions of patterns where the pattern is, in fact, qualitative. There are 

more appropriate ways of formalizing qualitative patterns, e.g. Thorngate and Edmonds (2013). 

Document the patterns. A complete description of the patterns used in modeling needs to 

document why the patterns were selected: what evidence supports them, and what is their role in 

justifying the purpose? Documenting patterns can range from simply stating them as widespread 

(or your own) beliefs, to citing multiple empirical studies that observed each pattern. Thorough 

documentation of several patterns can require substantial text, which could conflict with keeping 
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this “Overview” part of ODD short. In this case, patterns can be thoroughly documented in a 

separate section of a report or article and summarized in the ODD description; thorough 

documentation of the patterns in the ODD description is not essential for it to be complete 

enough to make the model reproducible. 

Checklist 

The ODD text for this element should describe: 

• The model’s specific purpose(s). 

• The patterns used as criteria for evaluating the model’s suitability for its purpose. 

Element 1 examples 

Purpose statements 

Pattern descriptions 

2. Entities, state variables, and scales 

This ODD element describes the things represented in the model. (Such a description can also be 

called an “ontology”.) It includes three closely related parts. 

The first part describes the model’s entities. An entity is a distinct or separate object or actor that 

behaves as a unit. ABMs typically have several kinds of entities and one or more entities of each 

kind. Here, describe the kinds of entities: what the entities represent, why they are in the model, 

and whether the model has one, several, or many entities of each kind. The following types of 

entities are typical:  

• Spatial units such as grid cells or GIS polygons. In spatially explicit models, these entities 

represent variation in conditions over space. Some models represent agent “locations” in 

non-geographic spaces, including networks. 

• Agents or individuals. An ABM can have one or several types of agents that should each 

be described separately. 

• Collectives (as described in Element 4, below). If the model includes agent collectives 

that are represented as having their own variables and behaviors, then they are also 

entities to describe. 

• Environment. Many models include a single entity that performs functions such as 

describing the environment experienced by other entities and keeping track of simulated 

time. Such an entity can be referred to as the environment, or by using the terms used by 

modeling platforms for the software object that performs these functions (e.g., the 

“Observer” in NetLogo (Wilensky 1999), the “model”, “model swarm”, etc., in other 

platforms). Even if this entity does not represent anything specific in the modeled system, 

it can be included in ODD if useful for describing the model. Any global variables 

essential to the model, such as those describing the environment, should be associated 

with such an entity. 
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The second part of this element is a description of the state variables (sometimes called 

“attributes”) of each kind of entity. State variables of an entity are variables that characterize its 

current state; a state variable either distinguishes an entity from other entities of the same kind 

(i.e., different entities or agents have different values of the same variable), or traces how the 

entity changes over time (the value of an entity’s variable changes over simulated time). For 

example, sex is an agent state variable if there are male and female agents, but not if, as in some 

ecological models, only females are included; in that case, sex cannot be used to distinguish 

agents because they all have the same sex. Example agent state variables are weight, sex, age, 

information known, memory of a specific variable or type of event, wealth, social rank, location 

(defined by spatial coordinates or by which grid cell or network node the entity occupies), which 

of several categories of agent it is in (e.g., buyer or seller in a market model where agents can 

switch roles), and which behavioral strategies the agent is currently using. Example variables of 

the environment are temperature, immigration rate, or disturbance frequency (ecology), or 

market price or flooding risk (social sciences).  

In addition to simply listing each kind of entity’s state variables, an ODD description should also 

describe the characteristics of each variable. These characteristics include: 

• What exactly does the variable represent (including its units if it has units)?  

• Is the variable dynamic (changing over time) or static (never changing in time)? 

• Type: is the variable an integer, a floating-point number, a text string, a set of 

coordinates, a boolean (true/false) value, a probability? 

• Range: can the variable have only a few discrete values (e.g., a text string representing 

the season with values of “spring”, “summer”, “fall”, or “winter”), is it a number with 

limited range (e.g., a size variable that cannot be negative), or can it have any value? 

It is usually convenient to list each kind of entity’s state variables and their characteristics in a 

table.  

The third part of this element is describing the model’s spatial and temporal scales. By “scales” 

we mean the model’s extent—the total amount of space and time represented in a simulation—

and resolution—the shape and size of the spatial units and the length of time steps. It is important 

to specify what the model’s spatial units and time steps represent in reality. A simple example 

description of scales is: “One time step represents one year and simulations were run for 100 

years. Each square grid cell represents 1 ha and the model landscape represents 1,000 x 1,000 ha; 

i.e., 10,000 square kilometers”. Models often use different time scales for different processes, or 

processes that are triggered only under certain conditions; such variations in scales should be 

described here. 

Guidance 

Provide the rationale for the choice of entities. Choosing which kinds of entities to include in 

a model, and which to leave out, is a very fundamental and important design decision. Often this 

choice is not straightforward: different models of the same system and problem may contain 

different entities. Therefore, it is important for making your model scientific instead of arbitrary 
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to explain why you chose its entities. (Pattern-oriented modeling, discussed at Element 1, is a 

strategy for making this choice.) 

Include networks and collectives as entities if they have their own state variables and 

behaviors. As discussed under ODD Element 4, ABMs can represent networks or other 

collectives as either (1) entities with their own state variables and behaviors or (2) emergent 

properties of other agents (e.g., flocks of birds that form as a result of how the birds move). 

Collectives of the first type should be described in this ODD element, while those of the second 

type should not. Do not include networks as model entities if they exist only as links among 

agents or can otherwise be completely described by the characteristics of their members. 

Do not confuse parameters with state variables. Parameters are coefficients or constants used 

in model equations and algorithms. ODD authors often mistakenly include parameters in their 

description of state variables. Be careful to include as state variables only those meeting the 

criteria stated above: they define how an entity’s state varies over time or how state varies among 

entities of the same type. By these criteria, the variables of a unique entity (there is only one 

entity of its kind, e.g., the Observer or the global environment) are state variables if they vary 

over time and parameters if they are static. (Models can be designed so that some parameter 

values vary among entities. For example, each agent may draw its own value of some parameter 

from a random distribution, to represent individual variation in a process. Such parameters with 

values that vary among entities should be treated as state variables.) 

Do not include all of an entity’s variables as state variables. The list of state variables should 

rarely include all the entity’s variables in the computer code. State variables should be “low 

level” in the sense that they cannot be calculated from other state variables; do not include 

variables that are readily calculated from other variables. For example, if farms are represented 

by grid cells, the distance from a farm to a certain service center would not be a state variable 

because it can be calculated from the farm’s and service center’s locations. Also do not include 

variables that are only used in a particular computer implementation instead of being essential to 

the model; display variables are an example. One way to define state variables is: if you want (as 

modelers often do) to stop the model and save it in its current state, so it can be re-started in 

exactly the same state, what is the minimum information you must save? Those essential 

characteristics of each kind of entity are its state variables. 

Do not yet describe when or why state variables change or what entities do. This element of 

ODD is simply to describe what is in the model, not what those things do. Save all discussion of 

what happens during simulations for later elements. 

Describe whether the model represents space, and how. Not all ABMs are spatial; some do 

not represent space or the location of agents. The discussion of spatial scales should therefore 

start by saying whether space is represented. This discussion should also say how space is 

represented. First, state whether the model is one-, two-, or three-dimensional. Many ABMs are 

two-dimensional and represent space as a collection of discrete units (“cells” or “patches”), so 

the location of an agent is defined by which spatial unit it is in. These units are often square grid 

cells, but it is also common to use hexagonal cells and irregular polygons. Space can also be 
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represented as continuous, with locations described using real numbers. Both discrete and 

continuous space can be used in the same model. The NetLogo platform, for example, uses a 

discrete square grid for spatial variables but allows agent locations to use continuous space. You 

therefore need to define which of these possibilities are used in your model. 

If a model uses toroidal space, the description of spatial scales needs to say so. “Toroidal space” 

(in NetLogo, “world wrapping”) approximates an infinite space by assuming that opposite sides 

of a rectangular model extent are connected to each other. (In physics, toroidal space is also often 

referred to as “periodic boundary conditions.”) An agent can move east off the right edge of the 

space, for example, and appear at the western edge. 

Describe whether the model represents time, and how. While not all models include a 

temporal dimension, almost all ABMs do. You therefore need to describe how time is 

represented. Most ABMs represent time via discrete time steps: time is assumed to jump ahead 

one step at a time and all model processes represent what happens during these jumps. However, 

some models also represent some processes as occurring in continuous time: events can be 

executed at specific, unique times. An ODD description needs to say whether the model uses 

time steps and how long these steps are, and also identify any processes that are instead modeled 

using continuous time. (How processes use continuous time should be summarized in Element 3, 

with full detail in Element 7.) 

Describe whether the model represents any dimensions other than time and space. It is 

possible for ABMs to use dimensions other than physical ones. For example, human agents could 

be represented as inhabiting a two-dimensional space with socioeconomic status on one axis and 

age on the second. If any such alternative dimensions are used, describe them as you would 

space.  

For abstract models without specific scales, provide an approximation or conceptual 

definition of scales. Some ABMs are not built to represent a specific real system, so their spatial 

and temporal scales are not clearly specified. For such models, the ODD description should at 

least describe what the time steps and spatial units represent conceptually and approximate their 

scale. For example, the well-known Schelling segregation model represents households that 

move when unhappy but most implementations (e.g., “Segregation” in NetLogo’s models 

library) do not specify its scales. But assuming that households occupy urban houses and that 

moving takes several months lets us approximate the spatial scale—grid cells are urban lots—

and the time step length—time steps are the time it takes a family to sell one house and buy 

another. 

When spatial or temporal scales are not fixed, describe typical values. Some models are 

designed for application to multiple systems that can vary in spatial resolution or extent, and for 

simulation experiments that vary in duration. In these cases, the spatial and temporal scales differ 

among applications so cannot be stated exactly. In such cases, the ODD description should state 

which scales are fixed vs. variable, and provide the range of typical values for the scales that 

vary. 
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Provide the rationales for spatial and temporal scales. In any kind of modeling, choosing the 

scales is well-known as a critical design decision because model scales can have effects that are 

strong yet difficult to identify. This is an especially important part of your model to justify, and 

pattern-oriented modeling is again one strategy for doing so. 

Describe scales in a separate paragraph. While it can be straightforward to describe spatial 

scales while describing the model’s spatial entities (e.g., “Space is represented as a 100 by 100 

grid of square cells that each represent 1 cm2”), we recommend writing a separate paragraph that 

concisely states the spatial and temporal scales. These are fundamental characteristics of a model 

that readers will often want to find easily. 

Do not discuss model processes and behaviors. While identifying the entities and their state 

variables here, it is tempting to also describe how they are initialized and the processes that cause 

them to change. However, those topics are instead described in elements 3 and 5. 

Checklist 

Describe: 

• The kinds of entities in the model and what they represent. 

• Why those entities were included and, if relevant, why other entities were not included. 

• The state variables of each kind of entity, usually in a table. For each state variable, 

describe exactly what it represents, its units, whether it is dynamic or static, its type, and 

its range. 

• Whether the model represents time and, if so, whether time is represented via discrete 

time steps, as continuous, or both. If time steps are used, define their length (the temporal 

resolution). Describe how much time is represented in a simulation (the temporal extent). 

• Whether the model represents space and, if so, whether space is represented as discrete 

spatial units, as continuous, or as both. If discrete spatial units are used, describe their 

shape and size (the spatial resolution). Describe how much total space is represented (the 

spatial extent). 

• Whether any other dimensions are represented, and how. 

• Why the spatial and temporal scales were chosen.  

Element 2 examples 

Example descriptions of entities 

Example descriptions of state variables 

Example descriptions of scales 

3. Process overview and scheduling 

The main purpose of this element is to provide a summary overview of what the model does as it 

executes: what processes are executed, in what order. (The details of these processes, except for 
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very simple ones, are fully described in Element 7.) At the same time, the element describes the 

model’s scheduling—the order in which the processes are executed—in complete detail.  

A model’s schedule specifies the order in which it executes each process, on each time step. We 

recommend describing the schedule here as a list of what simulation modelers call “actions”. An 

action specifies (1) which entity or entities (2) execute which process or behavior that (3) 

changes which state variables, and (4) the order in which the entities execute the process. The 

processes and behaviors, unless extremely simple, should be described only as executing a 

specific submodel that is fully described in Element 7. (A “submodel” is a part of the model that 

represents one particular processes; submodels are described independently in Element 7.) A 

simple example schedule is:  

1. The environment executes its “update” submodel, which updates its state variables date, 

temperature, rainfall, and the value of the habitat cell state variable food-availability.  

2. The agents each execute their “adapt” submodel, in which they choose a new location 

(update their state variable for which habitat cell they occupy) in response to the new 

environmental conditions. The agents do this in order of highest to lowest value of their 

state variable body-weight.  

3. The agents execute their “grow and survive” submodel in which they (a) update their 

body-weight variable by how much they grow, and (b) either live or die. The agents 

execute this action in an order that is randomized each time step. 

4. The display and file output are updated. 

However, actions can be hierarchical: one action can include executing other actions. The first 

action in the above example might actually be made up of two sub-actions: 

1. The environment executes its “update” submodel, which includes: 

a. The environment increments its date variable by 1 day. 

b. The environment reads in new values of its variables temperature and rainfall 

from the input data (Element 6). 

c. The spatial cells each execute their “update food” submodel, which calculates a 

new value of the cell state variable food-availability from the updated 

environment variables. The order in which cells execute is arbitrary. 

For most ABMs the Process overview and scheduling element should start with a summary of 

the schedule: a concise list of actions like the above example. The summary is then followed by 

discussion as necessary to (1) fully explain any scheduling that does not follow simple time 

steps, and (2) provide the rationale for the choice of processes in the model and how they are 

scheduled. 

Guidance 

Be complete: include everything that is executed each time step. Remember that while this 

ODD element is intended as an overview of how the model executes, it is the only place in ODD 

that describes exactly what actions are executed and their order of execution. 
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Describe the execution order. For any action that is executed by more than one entity (e.g., any 

action executed by some or all agents or by the spatial units), you must specify the order in 

which the agents execute. Sometimes the execution order is unimportant, but often it is a very 

important characteristic of the model.  

Make sure the schedule summary says when state variables are updated. The only purpose 

of the model’s processes and submodels is to update the entity state variables as simulated time 

proceeds. An essential part of this element is therefore to say exactly when the state variables of 

each entity are changed. Use the list of state variables in Element 2 as a checklist and make sure 

this element describes when they are updated. If the agents update a shared variable that affects 

other agents (e.g., a variable that represents resource availability), say whether the model uses 

“asynchronous updating”, in which the agents change the variable one at a time as they execute a 

submodel that uses the variable, or “synchronous updating”, in which the variable is updated 

only after all agents have executed.  

While Element 3 describes what happens each time step, the time step length and temporal extent 

of simulations should be described only in Element 2. 

Provide the rationale for the processes and scheduling, as a separate discussion. This 

element is the place to explain why you chose to include the processes in the model and to 

exclude other processes. This is also where to justify why you scheduled the processes as you 

did: why are the actions in the given order (if it is not completely self-evident), and why did you 

chose the execution order for the actions executed by multiple entities? (Most commonly, the 

agents in an ABM execute any particular action in (a) arbitrary order because the action involves 

no interaction among agents, so order does not matter; (b) randomized order, to avoid artifacts of 

execution order; or (c) in order of some agent state variable, to represent a hierarchy among 

agents.) Scheduling can have very strong effects on model results so should be considered 

carefully. These explanations should be written as paragraphs that come after the schedule 

summary. 

Keep the overview concise. This element is not the place to explain model processes in detail. 

Actions are typically described simply by saying which submodel is executed, with a cross-

reference to the submodel’s complete description in Element 7. Use submodel names that 

describe what the submodels do. However, extremely simple processes can be fully described 

here; for example: “All agents increment their state variable agent-age by 1.” 

Use diagrams like flow charts if they are helpful for specific actions, but they are rarely 

sufficient by themselves. Flow charts are the traditional way of describing the execution of 

some kinds of computer models, and can be helpful for explaining more complicated scheduling 

of an ABM. However, our experience has been that flow charts rarely can define an ABM’s 

schedule completely, clearly, and accurately by themselves. Use them if helpful for some 

particular action, but do not rely on one flow chart or diagram to define a whole model’s 

schedule; and accompany diagrams with sufficient text to make the process overview and 

schedule completely clear. 
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If necessary, use pseudo-code (but not actual program statements) to clarify execution 

order. ABMs sometimes include complex logic to determine which entities execute which 

processes when. Pseudo-code—natural language statements that include logic similar to 

computer code—can be useful for describing such logic. Do not, though, use actual 

programming statements from the model’s code in ODD; understanding such statements requires 

the reader to know the programming language.  

If your model includes actions scheduled as discrete events in continuous time steps, 

summarize how those events are scheduled. The above guidance and example schedule apply 

to models in which all actions are executed on discrete time steps (as discussed for Element 2). If 

your model also includes actions that are scheduled to execute in continuous time, here you 

should supplement the process overview and schedule with a list of those actions and say in 

general how they are scheduled (what causes an event to be scheduled for execution and what 

determines when it executes). Complete details of how events are scheduled should be provided 

in the submodel descriptions of Element 7. 

Checklist 

Provide: 

• A complete but concise model schedule that defines exactly what happens each time step. 

The schedule should be presented as a hierarchy of “actions” that each describe which 

entity or entities execute which process or submodel, which state variables are updated, 

and (for actions executed by multiple entities such as all agents or spatial cells) the order 

in which the entities execute it. 

• A separate discussion, if needed, that summarizes how actions executed in continuous 

time instead of discrete time steps are scheduled. 

• A discussion providing the rationale for why the model includes the processes it does. 

• A discussion providing the rationale for how the actions are scheduled. Why are the 

actions executed in the given order? For those actions executed by multiple entities, why 

did you choose the order in which the entities execute? 

Element 3 examples 

4. Design concepts 

The Design concepts element describes how 11 concepts that characterize ABMs were 

implemented in the model. This element is not needed to describe exactly what the model does 

or to replicate it, but instead is intended to place the model within a common conceptual 

framework and to show how its developers thought about its design. 

The design concepts are intended to capture important characteristics of ABMs that are not 

described well by traditional description methods such as equations and flow charts. Traditional 

modeling literature and training do not address most of these concepts, yet most of them are 

important for most ABMs. Therefore, the concepts serve as a checklist of important design 
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decisions that should be made consciously and documented. The concepts are also useful as a 

way to categorize, compare, and review ABMs.  

Some of the design concepts—especially Learning and Collectives—are not used in most ABMs, 

and few models use all the other concepts. For the concepts that your model does not use, 

provide a simple statement such as “Learning is not implemented” or “The model includes no 

collectives.” 

Occasionally, modelers may identify an important concept underlying the design of their ABM 

that is not included in the ODD protocol. If such authors are sure that this concept cannot be 

incorporated in the 11 existing concepts and that it is important to understanding the design of 

their model, they should give it a short name, clearly announce it as a design concept not 

included in the ODD protocol, and present it at the end of the Design concepts element. 

The Design concepts element is a particularly important place to provide the rationale for model 

design decisions. Your model will seem much less ad hoc and more scientific if you provide 

even a short summary of the reasoning and evidence that led to how these concepts were 

implemented. However, if providing the rationale requires extensive discussion it can be 

provided in one of the detailed submodel descriptions of Element 7. 

For each design concept, we provide a summary of its meaning and provide a checklist of what 

to describe. The ODD text for this element should be at a conceptual level: instead of providing 

full detail for how each concept is implemented, provide a general description of its use with (if 

relevant) citations for literature supporting that use. Use cross-referencing to point readers to the 

submodel descriptions (Element 7) where full details are described. 

Basic principles 

This concept relates the model to existing ideas, theories, hypotheses, and modeling approaches, 

to place the model within its larger context. These principles can occur at both the model level 

(e.g., does the model address a question that has been addressed with other models and 

methods?) and at the agent level (e.g., what theory for agent behavior does the model use, and 

where did this theory come from?). Describing such basic principles makes a model seem more a 

part of science and not made up without consideration of previous ideas. 

Describe: 

• The general concepts, theories, hypotheses, or modeling approaches underlying the 

model’s design, at both the system and agent levels. 

• How these basic principles are taken into account. Are they implemented in submodels or 

is their scope the system level? Is the model designed to provide insights about the basic 

principles themselves, i.e. their scope, their usefulness in real-world scenarios, validation, 

or modification?  

• Whether the model uses new or existing theory for the agent behaviors from which 

system dynamics emerge. What literature or concepts are agent behaviors based on? 
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Basic principles examples 

Emergence 

This concept addresses a fundamental characteristic of ABMs: that system behavior can emerge 

from the behavior of agents and from their environment instead of being imposed by equations 

or rules. However, the degree to which results are emergent or imposed varies widely among 

models and among the different kinds of results produced by a model. This concept therefore 

describes which model results emerge from which mechanisms and which results instead are 

imposed; here, “model results” not only refers to system level dynamics, but also to the behavior 

of the agents.  

This element should identify which model results emerge from, or are imposed by, which 

mechanisms and behaviors, but should not address how such mechanisms and behaviors work; 

that explanation begins with the following concept. 

Describe: 

• Which key model results or outputs are modeled as emerging from the adaptive decisions 

and behaviors of agents. These results are expected to vary in complex and perhaps 

unpredictable ways when particular characteristics of the agents or their environment 

change.  

• For those emergent results, the agent behaviors and characteristics and environment 

variables that results emerge from.  

• The model results that are modeled not as emergent but as relatively imposed by model 

rules. These results are relatively predictable and independent of agent behavior.  

• For the imposed results, the model mechanisms or rules that impose them.  

• The rationale for deciding which model results are more vs. less emergent. 

Emergence examples 

Adaptation 

This concept identifies the agents’ adaptive behaviors: what decisions agents make, in response 

to what stimuli. All such behaviors should be identified and described separately. The 

description should include components of behavior such as: the alternatives that agents choose 

among; the internal and environmental variables that affect the decision; and whether the 

decision is modeled as “direct objective seeking”, in which agents rank alternatives using a 

measure of how well each would meet some specific objective (addressed in the Objectives 

concept, below), or as “indirect objective seeking”, in which agents simply follow rules that 

reproduce observed behaviors (e.g., “go uphill 70% of the time”) that are implicitly assumed to 

convey success. 
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Many ABMs include only very simple behaviors that can be hard to think of as adaptive or even 

as decisions. An example is the Schelling segregation model: in it, agents simply move to a new 

randomly-selected location when too few of their neighbors are the same color. However, even 

such simple responses should be described as adaptive behaviors in ODD: the agents decide 

whether to stay or move by testing whether an objective measure—the percentage of neighbors 

having their color—is below a threshold value.  

At the other extreme are ABMs that use complex evolved behaviors: each agent has an internal 

decision model such as an artificial neural network that is evolved in the ABM to produce useful 

adaptive behavior. This approach can still be described in the framework provided here: what 

alternatives are considered by the decision model, what its inputs are, and how its outputs are 

used to determine behavior. An addition step for such models is to also describe the “training 

conditions”: what problem were the agents given to solve in the evolution of their decision 

models? Such adaptive behavior models can be considered indirect objective seeking because the 

agents have been trained via evolution to produce behaviors successful under the training 

conditions.  

Describe, for each adaptive behavior of the agents: 

• What decision is made: what about themselves the agents are changing. 

• The alternatives that agents choose from. 

• The inputs that drive each decision: the internal and environmental variables that affect it.   

• Whether the behavior is modeled via direct objective-seeking—evaluating some measure 

of its objectives for each alternative—or instead via indirect objective-seeking—causing 

agents to behave in a way assumed to convey success, often because it reproduces 

observed behaviors. 

• If direct objective-seeking is used, how the objective measure is used to select which 

alternative to execute (e.g., whether the agent chooses the alternative with the highest 

objective measure value, or the first one that meets a threshold value). 

Adaptation examples 

Objectives 

This concept applies to adaptive behaviors that use direct objective-seeking; it defines the 

objective measure used to evaluate decision alternatives. (In economics, the term “utility 

function” is often used for an objective measure; in ecology, the term “fitness measure” is used.) 

If adaptive behaviors are modeled as explicitly acting to increase some measure of the 

individual’s success at meeting some objective, what is that measure, what does it represent, and 

how is it calculated? Objective measures are typically estimates of future success that depend on 

the decision being modeled; they can be thought of as the agent’s internal model of how its 

objectives will be met by the alternative being considered. 
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Note that agents that are part of a Collective (defined below) or larger system—members of a 

team, social insects, leaves of a plant, cells in a tissue—can be modeled as having objectives that 

serve not themselves but the larger system they belong to.  

Describe, for each adaptive behavior modeled as direct objective-seeking: 

• What the objective measure represents: what characteristic of agent success does it 

model? An example from economics is expected wealth at some future time; in an 

ecological model an organism might use the probability of surviving until a future time or 

the expected number of future offspring. 

• What variables of the agent and its environment drive the objective measure. 

• How the measure is calculated. If it is a simple equation or algorithm, it can be described 

completely here; otherwise, provide a cross-reference to the submodel in Element 7 that 

describes it completely. Keep in mind that some other design concepts (e.g., Prediction, 

Sensing) may also describe parts of the objective measure.  

• The rationale behind the objective measure: why does it include the variables and 

processes it does? 

Objectives examples 

Learning 

This concept refers to agents that change how they produce adaptive behavior over time as a 

consequence of their experience. Learning does not refer to how adaptation depends on state 

variables that change over time; instead, it refers to how agents change their decision-making 

methods (the algorithms or perhaps only the parameters of those algorithms) as a consequence of 

their experience. While memory can be essential to learning, not all adaptive behaviors that use 

memory also use learning. Few ABMs so far have included learning, even though a great deal of 

research and theory addresses how humans, organizations, and other organisms learn. 

Describe: 

• Which adaptive behaviors of agents are modeled in a way that includes learning. 

• How learning is represented, especially the extent to which the representation is based on 

existing learning theory. 

• The rationale for including (or, if relevant, excluding) learning in the adaptive behavior, 

and the rationale for how learning is modeled. 

Learning examples 

Prediction 

Prediction is fundamental to successful decision-making (Budaev et al. 2019) and, often, to 

modeling adaptation in an ABM. (Railsback and Harvey 2020 extensively discuss the use of 

simple predictions in modeling difficult decisions by model agents.) Some ABMs use “explicit 

prediction”: the agents’ adaptive behaviors or learning are based on explicit estimates of future 

conditions (future values of both agent and environment state variables) and future consequences 
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of decisions. For these ABMs, explain how agents predict future conditions and decision 

consequences. What internal models of future conditions or decision consequences do agents use 

to make predictions for decision-making?  

Models that do not include explicit prediction often include “implicit prediction”: hidden or 

implied assumptions about the future consequences of decisions. A classic example of implicit 

prediction is that following a gradient of increasing food scent will lead an agent to food.  

Describe: 

• How the models of adaptive behavior use either explicit or implicit prediction.  

• The rationale for how prediction is represented: is the model designed to represent how 

the agents actually make predictions? Or is prediction modeled as it is simply because it 

produces useful behavior? 

Prediction examples 

Sensing 

This concept addresses what information agents “know” and use in their behaviors. The ability to 

represent how agents can have limited or only local information is a key characteristic of ABMs. 

Here, say which state variables of which entities an agent is assumed to “sense”, and how.  

Most often, sensing is modeled by simply assuming that the agent accurately knows the values of 

some variables, neglecting how the agent gets those values or any uncertainty in their values. But 

ABMs can model the actual sensing process—how an agent gathers information about its 

world—when that process is important to the model’s purpose. And ABMs can represent 

uncertainty in sensing: you could assume, for example, that your agents base some decision on 

the sensed value of a neighbor’s variable, when that sensed value includes random noise. (In fact, 

sensing itself can be modeled as an adaptive behavior: agents can decide how much of their 

resources to invest to collecting information when more information supports better decisions but 

is costly to obtain.) 

Describing sensing includes stating which variables of which entities are sensed. The description 

must cover what an agent knows about its own state: we need to say explicitly which of an 

agent’s own state variables it is assumed able to use in its behavior. When agents sense variables 

from other entities, such as the spatial unit they occupy or other agents, we must specify exactly 

how they determine which entities they sense values from. In ABMs, sensing is often assumed to 

be local, but can happen through networks or can even be assumed to be global.  

Describe: 

• What state variables, of themselves and other entities, agents are assumed to sense and 

use in their behaviors. Say exactly what defines or limits the range over which agents can 

sense information. 
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• How the agents are assumed to sense each such variable: are they assumed simply to 

know the value accurately? Or does the model represent the mechanisms of sensing, or 

uncertainty in sensed values? 

• The rationale for sensing assumptions. 

Sensing examples 

Interaction 

The ability to represent interaction as local instead of global is another key characteristic of 

ABMs. This concept addresses which  agents interact with each other and how. 

We distinguish two very common kinds of interaction among agents: direct and mediated. Direct 

interaction is when one agent identifies one or more other agents and directly affects them, e.g. 

by trading with them, having some kind of contest with them, or eating them. Mediated 

interaction occurs when one agent affects others indirectly by producing or consuming a shared 

resource; competition for resources is typically modeled as a mediated interaction. 

Communication is an important type of interaction in some ABMs: agents interact by sharing 

information. Like other kinds of interaction, communication can be either direct or mediated. An 

example of mediated communication is one insect depositing a pheromone that indicates to other 

insects that food was found. 

Describe: 

• The kinds of interaction among agents in the model, including whether each kind is 

represented as direct or mediated interaction. 

• For each kind of interaction, the range (over space, time, a network, etc.) over which 

agents interact. What determines which agents interact with whom? 

• The rationale for how interaction is modeled. 

Interaction examples 

Stochasticity 

Here, describe where and how stochastic processes—those driven by pseudorandom numbers—

are used in the model. While some ABMs base most of their processes on random events, others 

can produce highly variable results with no stochasticity at all.  

In general, stochastic processes are used when we want some part of a model to have variation 

(among entities, over time, etc.) but we do not want to model the mechanisms that cause the 

variability. It may be critical for a model to include how weather affects some system such as the 

electric power grid, but we certainly do not want to add the enormous complexity of predicting 

weather to the model; instead, we simply model the timing and duration of weather events as 

stochastic processes.  

One common use of stochasticity in ABMs is to insert variability in initial conditions: when we 

create our agents (and other entities) at the start of a simulation (Element 5, below) we do not 



ODD Guidance and Checklists 2020 
 

20 

 

want them to be identical, so we use pseudorandom number distributions to set the initial values 

of some state variables. 

A second common use is to simplify submodels by assuming they are partly stochastic. 

Assuming that an agent dies if a random number between 0.0 and 1.0 is greater than its survival 

probability is a very common example: we do not want to represent all the detail of when agents 

die. 

A third use of stochasticity is modeling agent behaviors in a way that causes the model agents to 

use different alternatives with the same frequency as real agents have been observed to. For 

example, a sociological model could use a stochastic process to model the age at which people 

marry, comparing random numbers to the marriage rates observed in real people. This approach 

would impose the observed marriage rates on the simulated population. 

Describe: 

• Which processes are modeled as stochastic, using pseudorandom number distributions to 

determine the outcome. 

• Why stochasticity was used in each such process. Often, the reason is simply to make the 

process variable without having to model the causes of variability; or the reason could be 

to make model events or behaviors occur with a specified frequency. 

Stochasticity examples 

Collectives 

Collectives are aggregations of agents that affect, and are affected by, the agents. They can be an 

important intermediate level of organization in an ABM; examples include social groups, fish 

schools and bird flocks, and human networks and organizations. If the agents in a model can 

belong to aggregations, and those aggregations have characteristics that are different from those 

of agents but depend on the agents belonging to them, and the member agents are affected by the 

characteristics of the aggregations, then the aggregations should be described here as collectives. 

Collectives can be modeled in two ways. First, they can be represented entirely as an emergent 

property of the agents, such as a flock of birds that assembles as a result of the flight rules given 

to the simulated birds. In this case, the collectives are not explicitly represented in the model: 

they do not have state variables or behaviors of their own. Second (and more common) is 

representing collectives explicitly as a type of entity in the model that does have state variables 

and its own behaviors. Social groups of animals or people (dog packs, political parties) have 

been represented this way. 

Describe: 

• Any collectives that are in the model.  

• Whether the collectives are modeled as emerging entirely from agent behaviors, or 

instead as explicit entities.  
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• In overview, how the collectives interact with each other and the agents to drive the 

behaviors of the entire system. (The details of these interactions will appear in other 

ODD elements.) 

Collectives examples 

Observation 

This concept describes how information from the ABM is collected and analyzed, which can 

strongly affect what users understand and believe about the model. This concept can also be 

another place to tie the model design back to the purpose stated in Element 1: once the model is 

built and running, how is it used to address its purpose? This concept is not intended to document 

how simulation experiments and model analyses are conducted, but instead to describe how 

information is collected from the model for use in such analyses. Observation is important 

because ABMs can be complex and produce many kinds of output: it is impossible to observe 

and analyze everything that happens in such a model so we must explain what results we do 

observe.  

Observation almost always includes summary statistics on the state of the agents and, perhaps, 

other entities such as spatial units and collectives. The ODD description needs to state how such 

statistics were observed: which state variables of which agents (e.g., were agents categorized?) 

were observed at what times, and how they were summarized. It is especially important to 

understand whether analyses considered only measures of central tendency (e.g., mean values of 

variables across agents) or also observed variability among agents, e.g., by looking at 

distributions of variable values across all agents. 

Modelers sometimes also collect observations at the agent level, e.g., by selecting one or more 

agents and having them record their state over simulated time. Such observations can be useful 

for understanding behaviors that emerge in a model. 

The ability to legitimately compare simulation results to data collected in the real world can be a 

major observation concern, leading some modelers to simulate, in their ABM, the data collection 

methods used in empirical studies. This “virtual scientist” technique (modeling the data 

collector; Zurell et al. 2010) strives to understand the biases and uncertainties in the empirical 

data by reproducing them in an ABM where unbiased and accurate observations are also 

possible.  

Describe: 

• The key outputs of the model used for analyses and how they were observed from the 

simulations. Such outputs may be simple and straightforward (e.g., means of agent state 

variables observed once per simulated week), or fairly complex (e.g., the frequency with 

which the simulated population went extinct within 100 simulated years, out of 1000 

model runs). 

• Any “virtual scientist” or other special techniques used to improve comparison of model 

results to empirical observations. 
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Observation examples 

5. Initialization 

Elements 5-7 are the “Details” part of ODD: now your goal is to provide complete detail so that 

your model and its results can be reproduced. This element describes exactly how the model is 

initialized: how all its entities are created before the simulations start. Describing initialization 

includes specifying how many entities of each kind are created and how their state variables are 

given their initial values.  

Guidance 

Describe everything required to set up the model. Initializing state variables usually includes 

more than just assigning numbers to entities; it can include setting agent locations in spatial 

models, building networks of agents, and creating any collectives that exist at the start of a 

simulation. Any actions or submodels that are executed only once, at the start of a simulation, 

should be considered part of initialization and described here. 

Explain whether initialization is intended to be case-specific or generic. If your model is 

designed to simulate only one particular case or study system, say so. In that case, this ODD 

element should fully describe the specific initialization data used for that case. If instead your 

model is designed to be generally applicable to multiple sites, then the Initialization element 

must be more generic. Instead of describing specific data sources, it can describe the kinds of 

data and information needed to apply the model to different sites. 

Explain whether initialization is always the same or differs among scenarios. Models are 

used by simulating different scenarios. Scenarios can differ from each other in how the model is 

initialized (e.g., by simulating different numbers of agents or different environments), or by 

varying factors such as input data (Element 6) or parameter values that affect results only after 

simulations start. In the first case, with scenarios differing in initial conditions, then the goal of 

simulation experiments is to understand the effects of initial conditions. In the second case, the 

goal is to understand the effects of processes happening after initialization and modelers often try 

specifically to eliminate effects of initial conditions (e.g., by ignoring results until the model has 

run long enough for initial conditions to have minimal effect). If it is clear which of these two 

kinds of scenarios will be used in model analyses, say so. If you vary the initial state of the 

model as part of simulation experiments, it can be helpful to point out here how you do so: which 

state variables of which entities are varied among scenarios, and how. 

Describe data imported to create the model world. If your model uses (for example) GIS data 

to define its simulated space, or reads in data used to define the initial agent populations, 

describe such data here. Describe where the data came from, why it was chosen, and how it was 

prepared. Discuss any uncertainties and limitations of the data, if relevant. (Be sure to understand 

the difference between initialization data and the input data that are described in Element 6.) 

Do not describe parameters and their values here. Even though the model’s parameter values 

may be read in at the start of a simulation, doing so is not considered part of initialization in 
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ODD because parameter values are not state variables and typically do not change during a 

simulation. The only parameters that should be described here are any used in initialization; 

parameters used in the rest of the model should be described in Element 7 with the submodel that 

uses them. 

Do not describe how new agents or entities are created during a simulation. If your model 

creates new agents or other entities as it executes, not just at the beginning, describe that creation 

process as a submodel, not as part of initialization. If the same submodel is used to create agents 

during initialization and during a simulation, it can be described in Element 7 and cited from this 

element.  

Provide the rationale for initialization methods. Your model becomes more scientific if you 

can explain such initialization decisions as determining which state variables vary among agents 

(or other entities) and how. It may be appropriate in this element to present simulation 

experiments that illustrate the effect of alternative initialization assumptions on model results. 

Checklist 

Describe: 

• What entities are created upon initialization, what determines how many of each are 

created, and how all their state variables are given initial values.  

• How the initial locations of entities are set, if relevant. 

• How any initial collectives, networks, or other intermediate structures are created. 

• Any site-specific data used to initialize the model: the data types, their sources, how they 

were processed, any known biases or uncertainties, and how they were used in 

initialization. 

• Whether simulation experiments will typically use scenarios that differ in initialization 

methods; if so, say how initialization will vary. 

• The rationale for key initialization methods. For example, explain why initial agents vary 

among each other in the way they do. 

Element 5 examples 

6. Input data 

Model dynamics are often driven in part by input data, meaning time series of either variable 

values or events that describe the environment or otherwise affect simulations. “Driven” means 

that model state variables or processes are affected by the input, but the variables or events 

represented by the input are not affected by the model.  

One common use of input data is to represent environment variables that change over time. For 

example, rainfall input may affect the soil moisture variable of grid cells and, therefore, how the 

recruitment and growth of model trees change. Geographic or other data can be read in 

periodically to simulate changes in landscapes or other model “spaces”. Often, the input data are 

values observed in reality (e.g., from a weather station or stock market records) so that their 
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statistical qualities (mean, variability, temporal autocorrelation, etc.) are realistic. Alternatively, 

external models can be used to generate input; output from general circulation models is often 

used to create input “data” representing climate change scenarios, and land use change  

Input data can also describe external events that affect the model during a simulation. Examples 

include input specifying the times at which new agents are created to represent immigration and 

the times at which shock events happen. 

To make an ABM reproducible, we need to define any input data that drive it. To reproduce 

specific model results, we need to provide the input data; and to fully justify the results we need 

to explain where the data came from and document their uncertainties, biases, and other 

limitations. Even when we are not trying to make a specific set of model results reproducible, we 

need to state what input data drive the model. Explaining exactly what the input represents and 

what sources provide useful values can be important for avoiding misuse of a model. 

Guidance 

If the model does not use input data, simply say so. In such cases, the ODD description should 

say “The model does not use input data to represent time-varying processes.” 

Input data do not include parameter values or data used to initialize the model. This 

element does not describe all “data” read by the computer when a simulation starts. Instead, it 

should only describe input used as the model executes to represent change over time in some 

particular state variable(s).  

Define the input data completely. Say exactly what each input variable represents, provide its 

units, and describe how the input was or can be obtained. If any methods are used to manipulate 

data from common sources into the format used by the model, describe them. If relevant, 

describe uncertainties, biases, or other limitations of the data. 

If your ABM is intended to represent multiple scenarios that use different input data, 

describe the kind of input it needs. If an ABM will be used for different sites or times, so that 

you cannot anticipate exactly what input data will be used with it, describe exactly what kind of 

input it needs.  

If input was generated from another model, document how. It should not be necessary to 

completely describe in the ODD how input was generated by another model, if that other model 

has been published. However, if a “custom” model run was used to create input just for your 

model, then the methods need to be described either here, in another part of the same publication, 

or in another document that can be cited here. 

Checklist 

Describe: 

• Whether the model uses any input data to represent variables that change over time or 

events that occur during a simulation. 

• The input data: what it represents, its units, and its source. 
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• Any nontrivial methods used to collect or prepare the input. 

• If input is from another model, how that model was used to generate the input. 

Element 6 examples 

7. Submodels 

This element is we fully describe any submodels that were cited but not fully described in 

Element 3 or Element 5. Element 7 should include a subsection for each such submodel.  

Guidance 

Describe each submodel completely. The primary concern with Element 7 is being complete: 

fully describing each submodel’s equations, algorithms, parameters, and parameter values. 

Tables are often used to define parameters in one place; they should include each parameter’s 

name, meaning, units, type, default value, range of values analyzed in the model, and 

information about where the values came from, e.g. literature, unpublished data, experiments, 

expert opinions, etc. Figures can complement the verbal description of the submodels.  

Readers should be able to exactly reproduce each submodel from the ODD description. (It is a 

good exercise to re-implement key submodels from the ODD description in a spreadsheet or 

similar platform, and then use that independent implementation to explore and calibrate the 

submodel as discussed below, to verify that the ODD description is complete, and to test the 

model software.) 

If helpful, break submodels into sub-submodels. Submodel descriptions can be hierarchical: 

complex submodels are often best described as a set of sub-submodels that are each described 

separately. Some submodels may even justify a full ODD description of their own (“Nested 

ODD”, see Grimm et al. (20XX) and Supplement S4).  

Provide the rationale for submodel design. For any process in a model, there are undoubtedly 

many possible submodel designs. Explaining how you arrived at your submodel design—by 

searching the literature, applying theory, fitting statistical relations to data, exploring alternative 

approaches, etc.—is very important for developing confidence in the full model.  

Include analyses of submodels. A second way to develop confidence in submodels and the full 

ABM is to analyze submodels and show how they behave over all conditions that could occur 

during simulations. It is very common for ABMs to produce questionable output because their 

submodels produce unexpected results in some situations, and very difficult to understand such 

problems when examining the full model. It is also usually very difficult to calibrate a submodel 

by analyzing results of the full ABM. The way to avoid such problems is to fully implement, 

calibrate, test, and explore each submodel before putting it in the full ABM. These analyses 

should be documented in the ODD: do not just describe the submodels but show how they were 

calibrated and tested, and show (usually via graphs) what results they produce over all the 

conditions they could encounter in simulations. In addition to inspiring confidence in readers, 

these analyses invariably save the modeler time by identifying problems earlier. (Note that if 
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your ODD is part of a TRACE document, these analyses would be presented in a different 

section of the TRACE document; see Supplement S7.)  

Checklist 

Describe: 

• All of the submodels, in a separate subsection for each.  

• For each submodel, its equations, algorithms, parameters, and how parameter values were 

selected.  

• The analyses used to test, calibrate, and understand submodels by themselves. 

Element 7 examples 
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Examples 

1. Purpose and patterns 

Example statements of model purpose 

These examples are organized by the seven general model purposes identified by Edmonds et al. 

(2019. Different modelling purposes. Journal of Artificial Societies and Social Simulation 22:6; 

http://jasss.soc.surrey.ac.uk/22/3/6.html). The definitions of these purposes is quoted from 

Edmonds et al. (This does not list all possible purposes but includes the relevant kinds for the 

vast majority of academic model published.) 

Example purpose of prediction (“to reliably anticipate well-defined aspects of data that is not 

currently known to a useful degree of accuracy via computations using the model”): 

[Carter N, Levin SA, Barlow A, Grimm V. 2015. Modeling tiger population and territory 

dynamics using an agent-based approach. Ecological Modelling 312: 347-362] 

The proximate purpose of the model is to predict the dynamics of the number, 

location, and size of tiger territories in response to habitat quality and tiger density… 

The ultimate purpose of the model, which will be presented in follow-up work, is to 

explore human-tiger interactions. 

Example purpose of explanation (“establishing a possible causal chain from a set-up to its 

consequences in terms of the mechanisms in a simulation”): 

[The Simplified Fish Cannibalism Model; unpublished description by SF Railsback of a model 

based on that of: DeAngelis DL, Cox DK, and Coutant CC. 1980. Cannibalism and size dispersal 

in young-of-the-year largemouth bass: experiment and model. Ecological Modelling 8:133-48.] 

The purpose of this model is to illustrate a potential explanation for how small 

changes in the initial size distribution and growth of a cohort of cannibalistic fish can 

produce large differences in later size distribution, an example of how positive 

feedback can cause rapid divergence within a system. The mechanism driving the 

potential explanation is interaction among slow growth from feeding on 

invertebrates, rapid growth from cannibalism, and “gape limitation” which allows 

one fish to eat another only if the two fish are sufficiently different in size. 

Example purpose of description (“to partially represent what is important of a specific observed 

case (or small set of closely related cases)”): 

[Arfaoui N, Brouillat E, Saint Jean M. 2014. Policy design and technological substitution: 

Investigating the REACH regulation in an agent-based model. Ecological Economics 107: 347-

365] 

The purpose of our model is to understand how different configurations in the policy 

design of REACH affect the dynamics of eco-innovation and shape market selection 

and innovation. In our model we take into account supplier–user interactions because 
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they represent an essential element in the development of new technologies, 

particularly in the chemical industry. Additionally, some stylized facts that illustrate 

the competition between organic solvents and biosolvents in the surface treatment 

activity are considered. The objective is to examine to which extent different 

combinations of flexible and stringent instruments of REACH can lead to the 

development and diffusion of alternative solvents (biosolvents). 

Example purpose of theoretical exposition (“establishing then characterising (or assessing) 

hypotheses about the general behaviour of a set of mechanisms (using a simulation)”): 

[Polhill JG, Parker D, Brown D, Grimm V. 2008. Using the ODD protocol for describing three 

agent-based social simulation models of land-use change. Journal of Artificial Societies and 

Social Simulation 11: 3] 

… SLUDGE is an abstract model designed for theoretical exploration and hypothesis 

generation. Specifically, SLUDGE was designed to extend existing analytical 

microeconomic theory to examine relationships between externalities, market 

mechanisms, and the efficiency of free-market land use patterns. 

[Kahl CH, Hansen H. 2015. Simulating creativity from a systems perspective: CRESY. Journal 

of Artificial Societies and Social Simulation 18: 4] 

CRESY simulates creativity as an emergent phenomenon resulting from variation, 

selection and retention processes (Csikszentmihalyi 1988, 1999; Ford & Kuenzi 

2007; Kahl 2009; Rigney 2001). In particular, it demonstrates the effects creators 

and evaluators have on emerging artifact domains. It was built based on stylized 

facts from the domain of creativity research in psychology in order to reflect 

common research practice there (Figure 3). 

An abstract model, CRESY was specifically designed for theoretical exploration and 

hypotheses generation (Dörner 1994; Esser & Troitzsch 1991; Ostrom 1988; 

Troitzsch 2013; Ueckert 1983; Witte 1991). It constitutes a form of research called 

theory-based exploration, in which models, concepts, stylized facts and observations 

are used as input to build a tentative model explored via computer simulation 

particularly in order to generate new hypotheses and recommendations as output 

(Bortz & Döring 2002, Ch. 6; Kahl 2012, Ch. 4; Sugden 2000). In contrast to 

explanatory research, the objective of exploratory research is to build theory instead 

of testing it. In relating this method to the model’s target, Sternberg (2006) noted 

creativity research is currently advancing not via its answers, but via its questions. 

Example purpose of illustration (“to communicate or make clear an idea, theory or 

explanation”): 

[Cardona A. 2013. Closing the group or the market? The two sides of Weber’s concept of closure 

and their relevance for the study of intergroup inequality. SFB 882 Working Paper Series, No. 

15: From Heterogeneities to Inequalities. DFG Research Center (SFB), Bielefeld, Germany] 
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The purpose of the model is to illustrate how individual competition, group closure, 

and market closure individually or in combination are causally sufficient to produce 

intergroup inequality. The model does not attempt to realistically replicate any 

empirically observable system, but instead aims at revealing the distinct causal paths 

by which each of these processes affect the distribution of resources among groups.  

Example purpose of analogy (“when processes illustrated by a simulation are used as a way of 

thinking about something in an informal manner”): 

[Railsback SF and Grimm VG. 2017. Unpublished description of the culture dissemination 

model of: Axelrod R. 1997. The dissemination of culture: a model with local convergence 

and global polarization. Journal of Conflict Research 41: 203-226.] 

The model’s purpose is stated [by Axelrod 1997] as being “to show the 

consequences of a few simple assumptions about how people (or groups) are 

influenced by those around them.” These assumptions are about how people learn 

culture from each other and, therefore, how culture spreads and how societies 

influence each others’ culture. In particular, the model assumes that people or 

societies share culture locally, and share more with others that are more similar to 

themselves.  

Example purpose of social learning (“to encapsulate a shared understanding (or set of 

understandings) of a group of people” developed during a collaborative model-building process): 

[Dumrongrojwatthana P, Le Page C, Gajaseni N, Trébuil G. 2011. Co-constructing an agent-

based model to mediate land use conflict between herders and foresters in Northern Thailand. 

Journal of Land Use Science 6: 101-120] 

This model was used for improving the researchers understanding on vegetation 

dynamics in relation to cattle management and reforestation effort, and facilitating 

the communication among village herders and NKU foresters through scenarios 

exploration. Moreover, stakeholders’ interactions and decisions making during G&S 

sessions will be observed and used for further building an ABM. 

Example descriptions of patterns 

The “patterns” part of Element 1 is new in this version of ODD. Therefore, only a few ODD 

documents include it. 

[Model of vertical migration by Daphnia. Section 5.5 of: Railsback, S. F. and B. C. Harvey. 

2020. Modeling populations of adaptive individuals. Princeton University Press, Princeton, New 

Jersey.] 

The purpose of this model is to explain and understand diurnal vertical migration 

(VM) in zooplankton and how it interacts with a life history tradeoff, the allocation 

of mass to reproduction or growth. The model is based explicitly on the cladoceran 

Daphnia magna (which we refer to simply as Daphnia).  
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We evaluate our model by its ability to reproduce three patterns. The first two are of 

primary importance because they were observed in extensive laboratory experiments 

by Loose and Dawidowicz (1994) and appear driven directly by the risk-growth 

tradeoff (Figure 5.1)… 

Pattern 1: Response of VM to predation risk. This pattern reflects how daphnia 

VM in the laboratory changed as the perceived risk of predation by fish increased. In 

the laboratory experiments, perceived risk was increased by adding fish 

kairomones—chemicals produced by fish that daphnia can use to sense fish 

density—and perceived risk was quantified as fish concentration (fish/L). With no 

perceived risk, daphnia stayed near the surface throughout the diurnal cycle. At low 

fish concentrations, daphnia remained near the surface or migrated only to shallow 

depths. With high risk, daphnia stayed near the bottom. But at intermediate risk, 

daphnia exhibited VM, with their mean elevation in the water column low during the 

day and rising toward the surface at night. And at the lowest fish concentration 

producing VM, daphnia did not begin migration until growing to a threshold body 

size.  

Pattern 2. Selection of slightly shallower depths with low food. Under high 

perceived risk of fish predation, a decrease in food availability resulted in daphnia 

selecting shallower depths. However, this change in elevation was small and 

occurred only in daytime.  

Pattern 3. Response of reproductive allocation to predation risk. Under low or 

absent perceived fish predation risk, the daphnia in Fiksen’s model initially allocated 

almost all their assimilated mass to growth instead of reproduction. This allocation 

let them reach maximum size quickly and switch to high reproductive output. At 

higher risk, the daphnia allocated some mass to reproduction from the start, 

producing some offspring before reaching maximum size. However, at very high risk 

the daphnia fed very little, grew slowly, and allocated only a moderate fraction of 

mass to reproduction… 

An example of patterns used to develop and test theory for adaptive behavior of agents: 

[Woodhoopoe Model from Chapter 19 of: Railsback SF, Grimm V. 2019. Agent-based and 

Individual-based Modeling: A Practical Introduction, Second Edition. Princeton University 

Press, Princeton, N.J.] 

We also provide three patterns that a theory for scouting forays should cause the 

ABM to reproduce… The first pattern is the characteristic group size distribution 

explained in figure 19.2. The second pattern is simply that the mean age of adult 

birds undertaking scouting forays is lower than the mean age of all subordinates, 

averaged over the entire simulation. The third pattern is that the number of forays per 

month is lowest in the months just before, during, and after breeding, which happens 

in December. 
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[Caption of Figure 19.2, which explains the first pattern] Characteristic woodhoopoe 

group size distribution… The histogram shows how many social groups there are (y-

axis) for each number of birds per group (x-axis)… The number of groups with zero 

adults (first bar) is very low, often zero. The number of groups with only 1 adult 

(second bar) is low, and the numbers of groups with 2–4 adults are highest. As the 

number of adults increases above 4, the number of groups becomes rapidly smaller… 

An example abstract model based only on simple, general patterns: 

[Telemarketer Model from Chapter 13 of: Railsback SF, Grimm V. 2019. Agent-based and 

Individual-based Modeling: A Practical Introduction, Second Edition. Princeton University 

Press, Princeton, N.J.] 

The real purpose of this model is to illustrate several kinds of interactions: how to 

model them and what their effects are on system behavior. While the model system 

is imaginary and none too serious, it does represent a common ABM scenario; a 

system of agents that compete for a resource and grow or fail as a result. For such a 

model, we define only simple, general patterns as the criteria for its usefulness: 

[that] two measures of system performance—the changes over time in the number of 

telemarketers in business and the median time that telemarketers stay in business—

depend on how many agents there are and how they interact. 

Back to guidance 

 

2. Entities, state variables, and scales 

We provide separate example descriptions of entities, state variables, and scales. 

Example description of entities 

[Knoeri C, Nikolic I, Althaus HJ, Binder CR. 2014. Enhancing recycling of construction 

materials: An agent based model with empirically based decision parameters. Journal of 

Artificial Societies and Social Simulation 17(3)] 

The following entities are included in the model: agents representing construction 

stakeholders (i.e. awarding authorities, engineers, architects and contractors), 

projects, grid cells (i.e. virtual geographical location) and the global environment 

representing the construction market (i.e. construction investments and materials 

available).  

Awarding authorities represent private persons, companies, or public authorities 

awarding prime building contracts, for different purposes (e.g. personal use, 

economic reasons, public building requirements). Engineers represent the actors 

responsible for the static design of the concrete structure in buildings; architects the 

stakeholders designing and supervising the construction, and contractors the 
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companies providing the concrete work… In total, 5788 agents are implemented, 

representing the statistical distribution of construction stakeholders in the case study. 

Projects represent the individual construction projects on which these agents 

interact… Per year about 450 projects are executed. Grid cells represent virtual 

construction sites of 30×30m… The observer or global environment (i.e. 

construction market) is the only entity on the system level, defining the annual 

construction investments and the potential recycling aggregates supply.  

Example description of state variables 

An example describing state variables in tables. (This example uses the term “observer” for the 

entity that represents the global environment. The table of observer variables is therefore a table 

of the variables that represent the environment.): 

[Railsback SF, Harvey BC, Ayllón D. InSTREAM 7 Model Description. Unpublished report.] 

The observer is a single entity that controls the global variables and submodels. 

Observer state variables (Table 1) are global variables that change over time. (Static 

observer variables—those that do not change over simulated time—are considered 

parameters and are defined with the submodels they are used in.) 

Table 1: Observer state variables 

Variable 

name 

Variable type and units Meaning 

sim-time Date-time (date and time variables 

include a calendar date and time of day, 

e.g., 28 March 2019 14:20) 

The date and time at the end of the current 

time step. 

prev-time Date-time The date and time at the start of the current 

time step (and therefore at the end of the 

previous time step). 

step-

length 

Real number; d The length (in fraction of a day) of the 

current time step: the difference between 

sim-time and prev-time. 

day-

length 

Real; d The length of daytime (when the sun is 

above the horizon) for the current day; this is 

not the length of the day phase. 

 

... 
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Cells are the lowest-level habitat entities; habitat variation within a cell is not 

represented (except via cell variables such as the fraction of the cell providing 

velocity shelter). Each cell represents a two-dimensional polygon in the horizontal 

plane. Most habitat characteristics are represented as cell state variables (Table 3). 

Because there are many cells, static cell variables are treated as state variables 

instead of parameters.  

Table 3: Cell state variables 

Variable name Variable type and units Meaning 

(cell location; the 

software uses 

NetLogo’s built-in 

coordinate variables) 

Real, static; cm. The X and Y coordinates of the 

cell’s centroid. 

cell-area Real, static; cm2 The cell’s area. 

cell-depth Real, dynamic; cm The cell’s current depth. 

cell-velocity Real, dynamic; cm/s The current water velocity. 

 

Example description of collectives as entities and their state variables: 

[Wild Dog Model Model from Chapter 16 of: Railsback SF, Grimm V. 2019. Agent-based and 

Individual-based Modeling: A Practical Introduction, Second Edition. Princeton University 

Press, Princeton, N.J.] 

The model includes three kinds of agent: dogs, dog packs, and disperser groups. 

Dogs have state variables for age in years, sex, the pack or disperser group they 

belong to (to keep track of which dogs belong to which pack), and social status. The 

social status of a dog can be (a) “pup”, meaning its age is less than one; (b) 

“yearling”, with age between 1 and 2; (c) “subordinate”, meaning age is greater than 

2 but the dog is not an alpha; (d) “alpha”, meaning the dominant individual of its sex 

in a pack; and (e) “disperser”, meaning the dog currently belongs to a disperser 

group, not a pack. 

Dog packs have no state variables except for a list (or, in NetLogo, an agentset) of 

the dogs belonging to the pack. Disperser groups have a state variable for sex (all 

members are of the same sex) and an agentset of member dogs. 

An example that provides the rationale for selection of state variables: 
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[Backmann P, Grimm V, Jetschke G, Lin Y, Vos M, Baldwin IT, Van Dam NM. 2019. Delayed 

Chemical Defense: Timely Expulsion of Herbivores Can Reduce Competition with Neighboring 

Plants. The American Naturalist 193: 125-139] 

The entities in the model are plants, larvae and patches. All state variables are given 

in table SO1. 

Plants 

Rationale: The plants represent the fast-growing tobacco plant, Nicotiana attenuata. 

These plants are native in semi-arid regions of southwestern USA. They are growing 

under high competition pressure in monoculture-like natural populations and defend 

against herbivores/pathogens etc. by producing induced defenses. Plants are also 

characterized by their circular "zone-of-influence" (ZOI), which are derived 

separately from the above- and below-ground biomass (see below). 

Larvae 

Rationale: The insect larvae are mobile, exponentially growing herbivores feeding 

on tobacco plants. During their growth they pass through five instars. At the 

beginning, larvae are bound to their host-plant, however, after reaching a certain 

weight and instar (third instar) they are able to move between plants, if necessary. 

Larvae choose to leave their host plant for two reasons: either the plant is nearly 

entirely consumed, or the defense-level (the percentage of defense compounds within 

the plant tissue) has reached a certain threshold. The latter is due to the fact, that 

larvae are affected by the defense-concentration in the plant tissue; the higher the 

concentration, the lower their performance, meaning that they show a decreased 

growth rate and an increased mortality rate. However, switching plants as well 

comes to a cost, more energy is needed and the probability of being predated rises 

significantly when being on the ground. Normally, larvae tend to chose plants in the 

neighbourhood as new host plants. We represented this behaviour by a dispersal 

kernel decreasing inversely proportional with the distance to the former host plant. 

… 

Example descriptions of scales 

 [Railsback SF, Johnson MD. 2011. Pattern-oriented modeling of bird foraging and pest control 

in coffee farms. Ecological Modelling, 222: 3305-3319] 

Scales. The model’s spatial extent is a square of 200 ×200 square cells, each 5 m × 5 

m in size; hence, the total area is 100 ha. This relatively fine resolution was chosen 

so the model can represent the effects of the small patches of trees and other habitat 

types that typify Jamaican coffee farms. The model’s space is represented as 

bounded, not toroidal: birds at one edge of the space cannot jump to cells on the 

opposite edge. 
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The model runs at a 1-day time step, except that bird habitat selection and foraging is 

modeled at much shorter time step during daytime hours. This “foraging time step” 

is a parameter forage-timestep with value of 0.0167 h (1 min). The model does not 

represent night; it assumes all events occur during the day. The parameter max-

forage-hrs-per-day specifies how many foraging hours there are per day, assumed 

constant at 12. Hence, birds can move and feed up to 720 times per day. 

The time period modeled represents the period when CBB infest berries and when 

North American birds winter in Jamaica. The model runs for 151 days representing 

December 1 to April 30. 

[Hsu SC, Weng KW, Cui Q, Rand W. 2016. Understanding the complexity of project team 

member selection through agent-based modeling. International Journal of Project Management 

34: 82-93] 

In our model, the temporal scale is set as days because project duration is often 

counted in working days. A tick in this ABM means a day. The new projects are also 

announced by project owners (e.g., the government, commercial entities, etc.) every 

day… This model sets the simulation time as 3 years because the duration of most 

projects in the small construction design field range from 2 weeks to 1 year, and 

simulating 3 years can properly encompass the typical operations of a small project-

based organization. 

An example using dimensions other than geographic space: 

[Natalini D, Bravo G. 2014. Encouraging sustainable transport choices in American households: 

Results from an empirically grounded agent-based model. Sustainability 6: 50-69] 

The agents’ position in the 3D space corresponds to their preferences for each mode 

of transport (i.e., the preferences act as coordinates for the dimensions x, y and z), 

hence there is no absolute concept of spatial scale in the model (i.e., the fact that two 

agents are close in the 3D space does not necessarily mean they are neighbours in the 

reality). 

According to their position in the 3D space, the agents are clustered in 

neighbourhoods. The agents that belong to the same neighbourhood are connected by 

links, while longer links can span across neighbourhoods. This allows social 

influence to be taken into account when the agents make decisions. … 

An example abstract model without specific scales: 

[Polhill JG, Parker D, Brown D, Grimm V. 2008. Using the ODD protocol for describing three 

agent-based social simulation models of land-use change. Journal of Artificial Societies and 

Social Simulation 11: 3] 
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Purpose: … SLUDGE is an abstract model designed for theoretical exploration and 

hypothesis generation. Specifically, SLUDGE was designed to extend existing 

analytical microeconomic theory to examine relationships between externalities, 

market mechanisms, and the efficiency of free-market land use patterns. 

… 

Scales: The size of the cell-based Landscape is specified by the user (Board_size). 

Thus, there is no absolute concept of spatial scale in the model (either extent or 

resolution). A relatively coarse resolution can be implemented by using a small 

Landscape size and smaller Demand parameter; and a relatively finer resolution 

model can be implemented through a larger Landscape size and larger Demand 

parameter. There is also no absolute concept of temporal scale since, as stated above, 

the model is effectively a search mechanism for a static equilibrium. The number of 

time steps required to reach an equilibrium depends on the initial conditions of the 

model, but is usually less than 20. 

Back to guidance 

 

3. Process overview and scheduling 

[Ayllón D, Railsback SF, Vincenzi S, Groeneveld J, Almodóvar A, Grimm V. 2016. 

InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under 

anthropogenic environmental change. Ecological Modelling 326: 36-53] 

Processes: The model is developed to cover the whole life-cycle of a stream-

dwelling trout species. It is structured in nine processes: one related to the reach and 

cells (update of environmental and habitat conditions), five concerning trout (habitat 

selection, feeding and growth, survival, reproduction, and ageing) and three 

performed by redds (development, survival, and hatching of eggs and genetic 

transmission of traits to new trout).  

The reach and cells update their state variables every time step over the whole 

simulation; trout perform each process every time step of the simulation, but for 

reproduction, which only occurs during the spawning season (every time step), and 

angling and hooking mortality, which is restricted to the angling season (every time 

step); trout age every time step but change their age-class once a year (the Julian day 

they were born); redd’s development and survival processes occur on a time-step 

basis since redd creation until all eggs have hatched; transmission of heritable traits 

occurs just when the egg hatches and the new trout is created. 

Schedule: The simulation starts at an initial date set by the user through the input 

parameter initial-date. Environmental and habitat updates are scheduled first because 

subsequent trout and redd actions depend on the time step’s environmental and 
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habitat conditions. Trout actions occur before redd’s because one trout action 

(reproduction) can cause redd mortality via superimposition. Reproduction is the first 

trout action because spawning can be assumed the primary activity of a fish on the 

day it spawns. Spawning also affects habitat selection because 1) spawners move to 

the spawning habitat when a redd is created and fertilized, and 2) spawners incur on 

weight, and thus body condition, loss after spawning, which affects their choice of 

habitat. Habitat selection is the second trout action each time step because it is the 

way that trout adapt to the new habitat conditions; habitat selection strongly affects 

both growth and survival. Feeding and growth precedes survival because changes in 

a trout’s length or condition factor affect its probability of survival. Survival has its 

own sub-schedule because the order in which survival probabilities for the different 

mortality sources are evaluated strongly affects the number of trout killed by each 

mortality source. Widespread, less random mortality sources are scheduled first: 1) 

high temperature, 2) high water velocity, 3) stranding, 4) poor condition, 5) 

predation by terrestrial animals, 6) predation by piscivorous fish, and 7) angling and 

hooking. The user has the possibility of choosing which mortality sources can kill 

trout during the simulation and which ones are not taken into account. Redd actions 

occur after cell and most trout actions because redds do not affect either habitat or 

fish, with the exception of creating new trout, which do not execute therefore their 

first actions until the day after their emergence. Redd survival is the first redd action 

to be executed. It includes five separate egg mortality sources that follow their own 

sub-schedule, from least to most random: 1) low temperature, 2) high temperature, 3) 

scouring, 4) dewatering, 5) superimposition. Trout emergence and genetic 

transmission of heritable traits is the last redd action. Since survival is scheduled 

before emergence, trout within redds are subject to redd mortality on the day they 

emerge (but not to trout mortality). Trout ageing is the last agent’s executed action 

each time step so that both pre-existent and new created trout can increase their age. 

Finally, observer actions (plotting graphs and writing output files) take place at the 

end of the time step. All actions occur in the same predetermined order: 

1. Reach updates environmental and biological conditions. Cells update depth and 

velocity as a function of flow, and drift/search food production rate. 

2. Trout reproduce:  

2.1. Trout become spawners. 

2.2. Trout spawn and create redds.  

3. Trout select habitat. 

4. Trout feed and grow: update length, weight and body condition factor. 

5. Trout survive or die. 
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6. Redds’ eggs survive or die.  

7. Redds’ eggs develop. 

8. Redds’ eggs hatch, new trout are created and heritable traits are transmitted. 

9. Trout age. 

10. Observer plots model graphical outputs and write model output files. 

An example description of a model that schedules actions as discrete events in continuous time, 

summarizing how those events are scheduled: 

[Evers E, de Vries H, Spruijt BM, Sterck EH. 2014. The EMO-model: an agent-based model of 

primate social behavior regulated by two emotional dimensions, anxiety-FEAR and satisfaction-

LIKE. PloS one 9: e87955] 

Our model is event-driven. While most social behaviors are discrete events in time, 

moving, resting and grooming are modeled as continuous duration behaviors. 

Therefore, time is modeled on a continuous scale. During a simulation run, 

individuals’ activations are regulated by a timing regime. The general process 

overview and the timing regime are illustrated in Figure 1. 

Each time, the agent with the lowest schedule time is activated first. Whenever an 

individual is activated, first all model entities update those state variables that may 

have increased or decreased over the time interval that has passed since the last 

activation of an entity (arousal, anxiety, satisfaction, LIKE attitudes) (see Submodels 

Arousal, Anxiety, Satisfaction and LIKE Attitudes below for more details). If the 

activated individual had scheduled a movement action, that action is executed (see 

Submodel Movement below). Else, ego checks the grouping criteria and employs 

grouping, if necessary (see Submodel Grouping below). If no grouping and no 

movement are to be performed, ego may select either a social behavior, or resting or 

random movement within the group. Which behavior (and which interaction partner) 

gets selected depends on ego’s own emotional state and its arousal, as well as on its 

emotional attitudes towards the potential interaction partners (see Submodel Action 

Selection below). Moreover, the selected behavior may affect emotional attitudes of 

involved individuals. It may also affect the emotional state of ego and involved 

individuals (not depicted in Figure 1), as well as their schedule time (see Figure 1). 

Thus, after activation, the next activation of ego, but also that of interaction partners 

or bystanders is scheduled anew. The exact time until an individual’s next activation 

depends on the behavior performed, received or observed, respectively (see Design 

Concept: Stochasticity for the random drawing of the schedule times). Movement, 

resting and grooming are implemented as duration behaviors and are performed in 

bouts. Here, after starting a movement, resting or grooming bout, ego is activated 

after some time to decide whether the behavior is to be continued (Table S3). As 
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social interactions may involve (and therefore activate) other group members, they 

may also interrupt a grooming or resting bout. As such, whenever ego receives an 

attack, it is immediately activated to respond with either fleeing or a counter-attack 

(Table S3). Whenever ego receives a communicative signal (e.g. an aggressive 

signal) or observes an attack nearby, a fast reaction is required and ego is activated 

shortly after to select an action (Table S3). 

Back to guidance 

 

4. Design concepts 

Basic principles 

Example (modified) from a model with basic principles at the system level: 

[Wild Dog Model Model, Chapter 16 of: Railsback SF, Grimm V. 2019. Agent-based and 

Individual-based Modeling: A Practical Introduction, Second Edition. Princeton University 

Press, Princeton, N.J.] 

This model addresses a classic problem of conservation ecology known as 

population viability analysis (PVA). This problem is to estimate the risk of a plant or 

animal population going extinct within a certain time period, and how that risk could 

be reduced by alternative management actions. There is an extensive literature on 

PVA, largely based on models that operate at the population and metapopulation 

levels (a metapopulation being a collection of populations linked such that 

individuals can disperse among them) and largely based on stochastic processes 

driven by probability parameters. This model differs from classical PVA models in 

two ways. First, it is not simply a population- (or metapopulation-) level model but 

instead explicitly represents lower levels of organization within the population (see 

Collectives, below). Second, while this model is highly stochastic (see Stochasticity, 

below), it is also driven by mechanistic processes and adaptive behavior within the 

population. 

Example (modified) from a model with basic principles at both the system and agent levels: 

[Railsback SF, Johnson MD. 2011. Pattern-oriented modeling of bird foraging and pest control in 

coffee farms. Ecological Modelling, 222: 3305-3319] 

At the system level, this model addresses a well-known management problem of 

agricultural and ecological systems: how does land use, including both the amounts 

of different land uses and their spatial arrangement, affect both agricultural 

production and wildlife conservation? For example, are these two goals best met by 

separating intensive agriculture from natural reserves or by conducting agriculture in 

ways that also support wildlife? Such questions are especially interesting and 
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complex when wildlife provides services such as pest control to agriculture, as in this 

model. 

In its bird foraging submodel (Section 2.3.7.1, below), this model poses a classic 

problem of optimal foraging theory: how should an individual decide whether to stay 

and feed in its current location and when to move on to another location? There is 

extensive literature on this problem, much of it based on the influential “marginal 

value theorem” of Charnov (1976). However, here this problem is posed in a more 

complex and realistic context than typically addressed in the foraging theory 

literature, especially because this is a population model with multiple birds depleting 

and competing for food. We provide insight into this problem by contrasting four 

alternative theories for this decision by how well they reproduce a variety observed 

patterns (Section 3). 

Example from a model based on an original idea instead of previous models and ideas:  

[From the description by Railsback and Grimm (2019; Chapter 22) of: Wilensky, U. 1997. 

NetLogo Segregation model. http://ccl.northwestern.edu/netlogo/models/Segregation. Center for 

Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. 

This model is based on the segregation model of Schelling (Schelling, T. C. 1971. Dynamic 

models of segregation. Journal of Mathematical Sociology 1, 143–86.)] 

The basic principle of the Segregation model is the idea that it was designed to 

illustrate: that strong individual behaviors may not be necessary to produce striking 

system patterns. Does the presence of strong segregation mean that individual 

households are highly intolerant, or can such strong patterns emerge in part from the 

system’s structure? Understanding this principle can be critical for developing 

policies to address social issues such as segregation. 

Back to guidance 

Emergence 

Example from a simple demonstration model: 

[From the description by Railsback and Grimm (2019; Chapter 22) of the NetLogo Segregation 

model.] 

The key outcomes of the model are segregation patterns—especially, how strongly 

segregated the entire system is; these outcomes emerge from how households 

respond to unlike neighbors by moving and, to a lesser extent, from the density of 

households (the percentage of locations that are occupied by a household). 

Example from a more complex model with a mix of emergent and imposed results: 

[Railsback SF, Johnson MD. 2011. Pattern-oriented modeling of bird foraging and pest control in 

coffee farms. Ecological Modelling, 222: 3305-3319] 
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The model’s primary results—pest insect infestation rates in two types of coffee 

production—and intermediate results such as bird abundance and spatial 

distributions of birds emerge from the amount and spatial distribution of the six 

habitat types, the seasonal abundance of pest insects, the number of birds, and the 

foraging behavior of birds. Of the nine characteristic patterns used to design and test 

the model, patterns 3, 4, 5, 7, and 8 especially emerge from bird foraging behavior 

and habitat characteristics. These patterns are believed driven by the same 

mechanisms that produce the primary results, so these patterns must also be 

emergent to make them useful for testing the model’s suitability for its primary 

purpose. Patterns 1, 2, 6, and 9 are at least partially imposed by model rules and 

parameters. These four patterns are direct outcomes of lower level processes, 

especially related to the pest insect’s life cycle, from which other patterns emerge; 

making these patterns emerge from lower-level mechanisms would make the model 

much more complex and was determined unnecessary for its purpose. 

Back to guidance 

Adaptation 

A simple example of direct objective seeking as satisficing: 

[From the description by Railsback and Grimm (2019; Chapter 22) of the NetLogo Segregation 

model.] 

The model households have one adaptive behavior: deciding whether or not to move 

to another location and, if so, selecting a new location. The decision of whether to 

move is modeled as direct objective seeking: a household moves if its objective 

measure (Objectives, below) is below a “tolerance threshold”. This approach can be 

considered a type of satisficing—making a decision to achieve an acceptable level of 

the objective instead of maximizing it. The tolerance threshold is a model parameter 

named %-similar-wanted. When a household does decide to move, it selects a new 

location from those not currently occupied using a stochastic process described 

below (the “move” submodel). 

An example of direct objective seeking as optimization: 

[Business Investor model. Chapter 10 of: Railsback SF, Grimm V. 2019. Agent-based and 

Individual-based Modeling: A Practical Introduction, Second Edition. Princeton University 

Press, Princeton, N.J.] 

The adaptive behavior of investor agents is repositioning: the decision of which 

neighboring business to move to (or whether to stay put), considering the profit and 

risk of these alternatives. Each time step, investors can reposition to any unoccupied 

one of their adjacent patches or retain their current position. Which patch to select is 

modeled as direct objective seeking using optimization: investors select the patch 

that provides the highest value of the objective measure explained below. 
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An example of indirect objective seeking: 

[Wild Dog Model Model. Chapter 16 of Railsback and Grimm (2019).] 

The primary adaptive behavior of dog packs is dispersal: the pack decides whether 

its subordinate dogs leave the pack in hopes of establishing a new pack. This 

behavior is modeled using indirect fitness seeking: stochastic rules cause the pack to 

select each alternative with a frequency similar to the frequency observed in real 

wild dogs, with the implicit assumption that these observed frequencies occur 

because they make dogs relatively successful at becoming alpha adults and, 

therefore, being able to reproduce. Two simple rules are used to model the dispersal 

behavior. If a pack has only one subordinate dog of its sex, it decides randomly 

whether this dog “disperses” by forming a new disperser group entity; the probability 

of dispersing is 0.5. If the pack has more than one subordinate dog of the same sex, 

those dogs always form a disperser group and leave the pack.” 

Back to guidance 

Objectives 

A simple objective: 

[From the description by Railsback and Grimm (2019; Chapter 22) of the NetLogo Segregation 

model.] 

The objective measure used by model households to decide whether to move is the 

percentage of adjacent households that have the same color as the household making 

the decision. “Adjacent” households are any households on the eight surrounding 

patches. 

A more complex objective measure: 

[Business Investor model. Chapter 10 of Railsback and Grimm (2019).] 

Investors rate business alternatives by an objective measure (utility measure, in 

economics) that represents their expected future wealth at the end of a time horizon 

(T, a number of future years) if they buy and operate the business. This expected 

future wealth is a function of the investor’s current wealth and the profit and failure 

risk offered by the patch: U = (W + TP) (1 – F)T where U is the expected utility for 

the patch, W is the investor’s current wealth, P is the annual profit of the patch, and 

F is the probability per year of the business failing. The term (W + TP) estimates 

investor wealth at the end of the time horizon if no failures occur. The term (1 – F)T 

is the probability of not having a failure over the time horizon; it reduces utility more 

as failure risk increases. (Economists might expect to use a utility measure such as 

present value that includes a discount rate to reduce the value of future profit. We 

ignore discounting to keep this model simple.) 
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Back to guidance 

Learning 

Example models that use established theories of human learning:  

[Gimona A., Polhill, JG. 2011. Exploring robustness of biodiversity policy with a coupled 

metacommunity and agent-based model, Journal of Land Use Science 6: 175-193] 

The adaptive behavior of land managers—deciding what land use to select—is 

modeled using an approach that includes learning. This submodel (fully explained 

below at “Land use selection submodel”) is based on “case-based reasoning” theory 

(Aamodt and Plaza 1994). This approach assumes decisions are based on memory of 

previous decisions in similar cases and their outcomes. The land manager agents use 

their own memories of previous decisions, but if their memory contains no similar 

cases they can use the memory of neighboring land managers. As a land manager 

executes more land use decisions it therefore develops a base of information that 

affects future decisions. 

[Angourakis A, Santos JI, Galán JM, Balbo AL. 2015. Food for all: an agent-based model to 

explore the emergence and implications of cooperation for food storage. Environmental 

Archaeology 20: 349-363] 

The reinforcement learning mechanism implemented in the model is an adaptation of 

Bush and Mosteller’s model of reinforcement learning (Bush and Mosteller 1955). 

At the end of a generation (learning-generation constant) each agent considers the 

times without shortage (n-non-shortage-ticks variable) and compares it with the 

aspiration-threshold (Th). Taking as reference the most frequent action she has 

undertaken in the former generation, the agent updates her strategy, i.e. the 

probability to cooperate (Pi), following a simple reinforcement learning rule: do it 

more often, if it led to more steady satisfaction (i.e. fulfilling the aspiration), 

otherwise try more often the alternative action. The strategy updating takes place in 

three steps: … 

Back to guidance 

Prediction 

An example of implicit prediction: 

[From the description by Railsback and Grimm (2019; Chapter 22) of the NetLogo Segregation 

model.] 

The adaptive behavior of households is based on the implicit prediction that moving 

when the objective measure is below the tolerance threshold is likely to eventually 

result in the household occupying a location where the tolerance threshold is met 

permanently. 
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Examples of explicit prediction: 

[Business Investor model. Chapter 10 of Railsback and Grimm (2019).] 

The utility measure estimates utility over a time horizon by using the explicit 

prediction that profit P and failure risk F will remain constant over the time horizon. 

This assumption is accurate in this model because the patches’ P and F values are 

static. 

[Model of vertical migration by Daphnia. Section 5.5 of: Railsback, S. F. and B. C. Harvey. 

2020. Modeling populations of adaptive individuals. Princeton University Press, Princeton, New 

Jersey.] 

In this version we modify the algorithm for predicting future reproduction and 

survival to include differences between day and night. We do this simply by keeping 

track of whether each of the future hours evaluated (Step 2 of the algorithm 

described in Section 5.4) is in day or night, and using memory of habitat conditions 

during the previous night (or day) to predict future conditions. A Daphnia deciding 

what to do during a daytime hour uses the prediction that future daytime hours until 

the time horizon will all have the same growth and survival conditions as the patch it 

is evaluating, and that future nighttime hours will have conditions it “remembers” 

from the patch and α value the Daphnia actually used during the most recent night 

hour. At night, a Daphnia predicts future day conditions from the patch and α value 

it used in the most recent day hour.  

Back to guidance 

Sensing 

An example of simple sensing assumptions: 

[Railsback SF, Johnson MD. 2011. Pattern-oriented modeling of bird foraging and pest control in 

coffee farms. Ecological Modelling, 222: 3305-3319] 

Birds are assumed able to perfectly sense the current availability of both types of 

prey in cells within a specified radius of their current cell. This radius is constant 

over time and space and among birds; its value is the model parameter forage-radius 

(meters). 

An example of sensing with feedbacks from adaptive behavior: 

[Railsback S. F., Harvey BC, Jackson SK, Lamberson RH. 2009. InSTREAM: the individual-

based stream trout research and environmental assessment model. PSW-GTR-218, USDA Forest 

Service, Pacific Southwest Research Station, Albany, California] 

Model trout are assumed able to sense habitat conditions and select habitat from 

among cells within a radius that increases with their size. Specifically, a trout can 

sense and potentially move to all cells whose centroids are less than sensing-distance 
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from the centroid of the trout’s current cell; the value of sensing-distance is equal to 

bLa where L is the trout’s current length (cm) and a and b are model parameters with 

standard values of 50 and 2.0. Therefore, sensing is a mechanism for positive 

feedback of growth: trout that grow more rapidly can sense and potentially occupy a 

wider range of habitat, which may allow them to grow more rapidly (or, should they 

choose, to use safer habitat). 

Back to guidance 

Interaction 

An example of mediated (indirect) interaction: 

[Jensen T, Holtz G, Chappin ÉJ. 2015. Agent-based assessment framework for behavior-

changing feedback devices: Spreading of devices and heating behavior. Technological 

Forecasting and Social Change 98: 105-119.] 

Interaction occurs through social influence between household agents sharing 

relationship links. For technology diffusion, adopting peers increases the probability 

(where this equals not already 1) a household adopts feedback technology. For 

behavior diffusion, a household agent gradually adapts its energy consumption 

behavior according to the mean behavior of its peers. 

An example of direct interaction:  

[Lobo EP, Delic NC, Richardson A, Raviraj V, Halliday GM, Di Girolamo N, … , Lyons JG. 

2016. Self-organized centripetal movement of corneal epithelium in the absence of external cues. 

Nature communications 7: 12388] 

Cells respond to the local configurations of other cells by moving in response to a 

pressure gradient or, in the case of LESCs, replicating in response to the death of a 

neighbor. 

An example with both direct and mediated interactions:  

[Telemarketer model, Chapter 13 of Railsback and Grimm (2019).] 

There are two kinds of interaction in this model: between telemarketers and potential 

customers, and among the telemarketers. The telemarketers interact directly with 

potential customers by communicating to find out whether the customers will buy, 

and then by making the customers change their state to indicate that they bought 

during the current time step. The telemarketers’ interactions with each other are 

mediated by the resource they compete for: customers. When the territories of 

telemarketers overlap, customers of one telemarketer are no longer available as 

potential sales for other telemarketers. Both of these kinds of interaction are local 

because telemarketers are assumed able to call only customers within a radius of 

their location. However, this radius increases with telemarketer size (see the 
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“Telemarketer sales” submodel, below) and interaction approaches global for large 

telemarketers. 

Back to guidance 

Stochasticity 

A simple use of stochasticity: 

[From the description by Railsback and Grimm (2019; Chapter 22) of the NetLogo Segregation 

model.] 

Stochasticity is used in two ways. First, the model is initialized stochastically in such 

a way that (a) the total number of households, (b) whether each location is occupied 

initially, (c) the color of each household, and (d) the number of households of each 

color, are all stochastic (Initialization, below). These initialization methods are 

stochastic so that the model can be assumed unsegregated at the start of a simulation, 

and so that each model run produces different results. Second, when a household 

decides to move, its choice of new location (the “move” submodel) is stochastic (but 

not completely random). The new location of households when they move is 

stochastic because modeling the details of movement is unnecessary for this model. 

An example of more complex use of stochasticity, including stochastically generated landscapes: 

[Railsback SF, Johnson MD. 2011. Pattern-oriented modeling of bird foraging and pest control in 

coffee farms. Ecological Modelling, 222: 3305-3319] 

Stochasticity is used in initializing the model (Initialization, below) to create 

irregular clumps of each habitat type; this stochastic process allows creation of 

multiple landscapes that have the same over-all habitat characteristics (e.g., area of 

each habitat type, number and mean size of habitat clumps), which are used as 

replicates in analysis of model responses to habitat availability scenarios. 

Stochasticity is also used in initialization to assign each bird a home cell, and to 

impose variability among cells in coffee pest infestation rates (see the “pest 

infestation rate” submodel, below). During a simulation, the main uses of 

stochasticity are to (1) avoid a feeding hierarchy by randomizing the order in which 

birds execute their foraging trait each foraging time step, and (2) decide whether 

birds die if they did not make their daily intake requirement (see the “mortality” 

submodel, below). In bird foraging, several cells may offer exactly the same, highest, 

food intake rate; in such cases, the bird chooses one of these cells randomly. 

Back to guidance 

Collectives 

An example of collectives explicitly modeled, as social groups: 

[Wild Dog model, Chapter 16 of Railsback and Grimm (2019).] 
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This model includes two kinds of collectives, groups of wild dogs that strongly affect 

the individual dogs and are strongly affected by the individuals. The collectives are 

represented as specific kinds of model entity with their own state variables and 

behaviors. These entities are called packs and disperser groups; the entities and their 

state variables are defined above at Entities, State Variables, and Scales. These 

collectives are included in the model because wild dogs have many cooperative 

behaviors and make decisions critical to the population’s abundance and persistence 

in ways that depend on their group’s state. It is much easier to model cooperative 

behavior and collective decisions as behaviors of collective entities than as behaviors 

of the individual dogs. 

Back to guidance 

Observation 

Example of a model with results compared to observed patterns, including a special procedure to 

generate observations more comparable to field data: 

[Railsback SF, Johnson MD. 2011. Pattern-oriented modeling of bird foraging and pest control in 

coffee farms. Ecological Modelling, 222: 3305-3319] 

Graphical output on the model interface shows the habitat type of each cell, via cell 

color. Bird locations are also shown. The model randomly selects one bird per day 

and displays a trace of its movement during the day, so foraging patterns can be 

observed. Summary statistics on the bird population, pest insects, and other food 

insects, are provided via plots on the interface and output files. Virtual surveys are a 

special kind of observation designed for comparison of model results to field surveys 

of bird populations; they simulate the methods used by field biologists to estimate 

bird densities so that the results are affected by the same biases as the real surveys. 

This observation technique is fully described below (the virtual survey submodel). 

Example from a model that requires complex analysis to meet its purpose: 

[Wild Dog model, Chapter 16 of Railsback and Grimm (2019).] 

The model’s purpose is to study how potential management alternatives affect the 

persistence of dog populations, and one measure of a simulated population’s 

persistence is the probability that it goes extinct within a certain number of years. 

This probability of extinction can be estimated as the fraction of replicate 

simulations in which no dogs are alive at the end. How long these simulations are, 

and how many replicates are executed, are arbitrary observation decisions. Here, the 

dog population’s persistence is estimated as the fraction of 500 replicate simulations 

in which there are no dogs alive after 100 years. 

Example of a model that requires observation of individual variables to estimate complex 

statistics at the population level: 
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[Baggio RA, Araujo SBL, Ayllón D, Boeger WA. 2018. Dams cause genetic homogenization in 

populations of fish that present homing behavior: Evidence from a demogenetic individual-based 

model. Ecological Modelling 384: 209-220] 

The location (spawning area) and genome of each individual are recorded every 

generation. The changes in the genetic structure are assessed through the global, 

within-subnetwork (upstream or downstream to the dam) and paired (between two 

subpopulations) Fst index (Weir and Cockerham, 1984, Weir, 1996) before and after 

the addition of the dam. Global Fst is the component of the genetic variation due to 

differences among all subpopulations. Within-subnetwork Fst is the component of 

the genetic variation due to differences among the subpopulations within each 

subnetwork. The pairwise Fst is the inter-population level genetic variation between 

two subpopulations. The Fst is estimated as 

𝐹𝑠𝑡 =  
∑ 𝛔𝑃𝑣

2𝑔
𝑣=1

∑ 𝛔𝑃𝑣
2𝑔

𝑣=1 +∑ 𝛔𝐺𝑣
2𝑔

𝑣=1

     (1) 

where σPv
2 is the variance between subpopulations and σ2

Gv
 is the variance within 

subpopulations for the locus v. The σ2
Gv is estimated as the mean square for within 

populations (MSG) 
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where pAi is the frequency of the allele A of the locus v in the ith subpopulation, and ni 

is its subpopulation size. The σ2
Pv is estimated as  
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where MSP is the mean square for between populations and nc is composed by the 

average sample sizes and their variance. Then, the nc is estimated as 
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where r is the number of populations and ni is the population size of the population i. 

The MSP is estimated as 

𝑀𝑆𝑃 =
1

𝑟−1
∑ 𝑛𝑖𝑖 (𝑝𝐴𝑖

− 𝑝𝐴)2     (5) 

where pA is the frequency of the allele A of the locus v in the metapopulation (global 

Fst), subnetwork (within-subnetwork Fst) and among two populations (pairwise Fst). 

The Fst statistics were chosen because it is one of the most widespread indexes used 

to test genetic differentiation among populations. Fst varies from zero to one: zero 

values represent absence of genetic differentiation, and non-zero values represent 

some level of genetic differentiation (see Freeland and Petersen, 2011 for details). 
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Example of a model that uses a “virtual scientist” technique to improve comparison of model 

results to empirical observations: 

[Pais MP, Cabral HN. 2017. Fish behaviour effects on the accuracy and precision of underwater 

visual census surveys. A virtual ecologist approach using an individual-based model. Ecological 

Modelling 346: 58-69] 

The model fits into what has been generically called a virtual ecologist approach 

(Zurell et al., 2010), where the diver (i.e. the “virtual ecologist”) observes and 

records virtual fish, while performing a simulated sampling method. In the end of the 

sampling method, the counts made by the diver are divided by the sample area to 

calculate estimated densities. In order to calculate the accuracy of the sampling 

procedure, as well as the bias due to non-instantaneous observation, the real density 

of every species in the model environment is registered, as well as the density of 

each species inside the sampling area at the start of the sampling method.  

For every species, the model outputs the real density, the estimated density (using the 

virtual ecologist) and bias due to non-instantaneous sampling. Bias is calculated as 

the difference between the estimated (non-instantaneous) density and the initial 

density inside the sample area, divided by the initial density (Ward-Paige et al., 

2010). Therefore, a bias of 1 means that the diver counted on average one more fish 

per square meter for each fish it would have counted if sampling was instantaneous. 

Back to guidance 

 

5. Initialization 

An example description of how agents are created and their state variables initialized: 

[Ayllón D, Railsback SF, Vincenzi S, Groeneveld J, Almodóvar A, Grimm V. 2016. 

InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under 

anthropogenic environmental change. Ecological Modelling 326: 36-53] 

Each individual’s state variable (sex, age, length, and genotypic and phenotypic 

values of heritable traits) is initialized by drawing from probability distributions 

describing their variability. Length and genotypic values of heritable traits are 

truncated at 4 standard deviations from the center of the probability distributions. 

Length of 0+ trout cannot be lower than a minimum user-defined value 

fishMinNewLength. Trout weight is calculated as a function of length: 

fishWeight = fishWeightParamA × (fishLength)fishWeightParamB         

and condition factor is subsequently calculated as a function of body length and 

weight. The condition factor variable used in the model (fishCondition) can be 

considered the fraction of “healthy” weight a fish is, given its length (approach 
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adopted from Van Winkle et al. 1996). The value of fishCondition is 1.0 when a fish 

has a “healthy” weight for its length, according to the length-weight relationship. 

Trout maximum sustainable swimming speed is a function of the fish’s length and 

water temperature. It is modelled as a two-term function, where the first term 

represents how it varies linearly with fish length, while the second modifies 

maximum swimming speed with a non-linear function of temperature: 

fishMaxSwimSpeed [cm s-1] = [fishMaxSwimParamA × fishLength + 

fishMaxSwimParamB] 

× [fishMaxSwimParamC × (temp)2 + fishMaxSwimParamD × temp + 

fishMaxSwimParamE)]  

Status is set to “alive”. Maturity status is set to either “mature” or “non-mature” 

depending on whether trout’s initial length is over or under the phenotypic value of 

the length maturity threshold (fishSpawnMinLength). The spawnedThisSeason? 

variable is set to “NO”. 

Each trout’s location is assigned stochastically while avoiding extremely risky 

habitat. The model limits the random distribution of trout to cells where the trout are 

not immediately at high risk of mortality due to high velocity or stranding. 

Therefore, each trout is located in a random wetted cell (cellDepth > 0) with a ratio 

of cell velocity to the trout’s maximum swimming speed (cellVelocity / 

fishMaxSwimSpeed) lower than the parameter mortFishVelocityV9, the value at 

which the probability of surviving high velocity mortality equals 0.9 (see 2.7 

Submodels Section 5). 

An example description of data imported to create the model world, including the source of the 

input map and how input was prepared: 

[Baum T, Nendel C, Jacomet S, Colobran M, Ebersbach R. 2016. “Slash and burn” or “weed and 

manure”? A modelling approach to explore hypotheses of late Neolithic crop cultivation in pre-

alpine wetland sites. Vegetation History and Archaeobotany 25: 611-627] 

Landscape initialization: The initial state of the model at the time t=0 is a 

hypothetical model environment without previous human influence consisting of 

200x200 cells of 25x25 metres. The cells are described by various variables provided 

via input files that are generated using Geographical Information Systems (GIS). In 

the presented model version, the following data were used, but other spatial data 

from other landscapes can be applied as well.  

The variable soil type may either be Luvisol, Gleysol, Peat bog or Water. The soil 

data has been simplified and adapted (using data from LGRB 2013) to better 

resemble conditions before the onset of wide-spread human influence using simple 

rules. All sub-varieties of a soil type have been treated as being identical (e.g. 
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Anmoorgley, Quellgley, Auengley have are all treated as Gley); Colluvia have been 

assigned the value of the dominant neighboring value of Gley or Luvisol, as they 

were only formed through more intense human influence than in the period in 

question; the same procedure has been applied to areas with the value no data. The 

result is a much generalized, but still valid soil map that roughly retrodicts conditions 

of the mid-Holocene without strong human influence. 

The variable travelcost is taken from an externally calculated GIS raster dataset 

(www.lgl-bw.de). The variable natural soil fertility is dependent on the soil type and 

has the relative values of 1 for Luvisol, 0.75 for Gleysol and 0.4 for Peat Bog. These 

values are assumptions. 

The natural potential ecosystem of the cell is dependent on the soiltype: Mixed 

Beech Forest on Luvisol, Alder-Ash-Forest on Gleysol, and Alder Carr on Peat Bog. 

This very generalized allocation is based upon information given by Rösch et al. 

(2014, p. 124), Kerig and Lechterbeck (2004, p.24) and Lang (1990). The cells 

covered with Beech Forest or Alder-Ash-Forest are grouped to stands consisting of 

1-16 cells, equaling 0.06-1 ha, sharing the same forest development phase 

(rejuvenation-, initial-, optimal-, terminal, and decay- phase). This roughly reflects 

conditions for natural forest dynamics as described e.g. in Emborg et al. (2000), 

Remmert (1991) or in Leibundgut (1959, 1982, 1993). The area covered by the forest 

development phases is determined by the ratio of 8/8/28/36/20 as described in Mayer 

and Neumann (1981). With an assumed duration of one complete cycle of forest 

development from rejuvenation to decay phase lasting 500 years, this translates into 

a duration of the phases of 40, 40, 140, 180 and 100 years in this simulation. For 

Alder Carr, no such dynamics is assumed. 

An example description of how initial collectives, networks, or other intermediate structures are 

created: 

[Fedriani JM, Wiegand T, Ayllón D, Palomares F, Suárez-Esteban A, Grimm V. 2018. Assisting 

seed dispersers to restore oldfields: An individual-based model of the interactions among 

badgers, foxes and Iberian pear trees. Journal of Applied Ecology 55: 600-611] 

… Then, the dispersers spatial groups are defined, their associated home range being 

delineated as an ellipse, which is characterized by four parameters: its centre, the 

most eastern point in the major axis, angle, and eccentricity (Table S2). These 

parameters are specific for each spatial group, but do not differ between disperser 

species. All patches in and within the ellipse belong to the home range of the spatial 

group.     

Finally, the dispersers are initialized by setting the total number of dispersers 

(number-dispersers global parameter) and the proportion of foxes vs. badgers by 

means of the parameter dispersers-proportion. Each disperser is randomly given an 

initial home patch (called den), typically (80% and 90%, for badgers and foxes, 
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respectively) within the scrubland, on a buffer area (width defined through the 

parameter buffer-den) along the border between the scrubland and the oldfield. This 

area of den-initialization includes also a small "peninsula" of the scrubland 

southwestern portion which is very close (but not directly bordering) with the 

oldfield.  In the remaining 20 and 10% of the cases, the initial home patch of each 

disperser (the den) is assigned randomly, with each patch having an equal probability 

of selection (irrespective of whether another disperser has been assigned to the same 

patch), but limited to open habitats (oldfield, marshes, juncus and prairie) within the 

area defined by the two spatial groups (northern or southern). In this way, foxes and 

badgers are usually initialized in the scrubland, which is in accordance with our 

telemetry data. These rules are based on empirical data indicating that most 

dispersers locate their dens in such portion of the study area. The initial position 

defines to which spatial group the disperser belongs (see Sensing concept), so that 

dispersers with an initial y-coordinate over the parameter limit-social-groups belong 

to the northern spatial group, and viceversa. Since the home ranges of the spatial 

groups overlap, this limit is defined as the average value of the y-coordinates of the 

most southern patch of the buffer area of the northern spatial group and the most 

northern buffer-patch of the southern group. 

An example description of scenarios defined by different initial conditions: 

[Cerdá M, Tracy M, Ahern J, Galea S. 2014. Addressing population health and health 

inequalities: the role of fundamental causes. American journal of public health 104(S4): S609-

S619] 

At initialization, the agent population consisted of 4000 individuals aged 18 years 

and older with sociodemographic characteristics assigned to match distributions of 

the adult population in New York City according to the 2000 US Census (for a table 

specifying the default values of the initialization parameters of the model, see 

Appendix 6, available as a supplement to this article at http://www.ajph.org). We 

divided the grid representing the physical space into 16 neighborhoods, and each cell 

in the grid could be occupied by only 1 agent. Assignment of agent locations and 

determination of neighborhood boundaries depended on the objectives of the model 

run with respect to racial and economic residential segregation. We implemented 2 

residential segregation scenarios in different model runs: complete segregation of 

agents by race and income and no racial or economic segregation. To achieve 

complete segregation by race and income, each of the 16 neighborhoods in the model 

corresponded to 1 of the 16 possible combinations of race/ethnicity and household 

income, with only agents assigned that particular combination of race and income 

residing in that neighborhood. For example, all White agents with an income of $75 

000 or more lived in 1 neighborhood, whereas Black agents with an income of $75 

000 or more lived in another neighborhood. The size of the neighborhood was 

proportionate to the size of the race/income combination in the total population, with 

the width of the neighborhood on the grid reflecting the racial distribution and the 
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height of the neighborhood on the grid reflecting the income distribution (for a 

snapshot of the grid, see Appendix 7, available as a supplement to this article at 

http://www.ajph.org). By contrast, for populations with no racial or economic 

segregation, we randomly assigned agents to a location on the grid, which was 

divided into 16 neighborhoods of equal size, producing neighborhoods that each had 

residents with a mix of race and income characteristics. … 

An example of providing the rationale for initialization methods:  

[Lobo EP, Delic NC, Richardson A, Raviraj V, Halliday GM, Di Girolamo N, … , Lyons JG. 

2016. Self-organized centripetal movement of corneal epithelium in the absence of external cues. 

Nature communications 7: 12388] 

Cell positions are initially chosen so that the Voronoi diagram generated is a regular 

hexagonal grid (the distance between the positions of neighboring cells is a constant, 

s, known as the idealized cell diameter). All ESCs are given a random age 

(uniformly distributed from 0 to their lifespan), and a unique cell lineage 

identification code. Initially, all TACs are not assigned a lineage identification code. 

TACs derived from ESCs after initialization inherit the lineage identification code of 

their parent cell. Cell types are chosen such that LESCs have only two adjacent 

LESC neighbors, and that TACs that have less proliferative capacity are placed 

towards the center of the cornea. This placement has been validated through 

simulations where the proliferative capacity of TACs had no spatial relationship, and 

the simulations were run until homeostasis was reached. At that point, TACs near the 

center had less proliferative capacity than cells near the limbus. 

Back to guidance 

 

6. Input data 

An example description of how field data were obtained and processed to develop model input: 

[Frank BM, Baret PV. 2013. Simulating brown trout demogenetics in a river/nursery brook 

system: The individual-based model DemGenTrout. Ecological Modelling 248: 184-202] 

The following time series of observations were available for the Lesse 

River/Chicheron Brook hydrological system: water temperatures (ºC) in both 

streams, flow rates (m3 s-1) in stream L, and water heights (m) in stream C. Water 

temperatures in both streams were automatically measured and recorded every hour 

with loggers, from years 2004 to 2009. For the Lesse River, daily flow rates were 

available from a nearby permanent gauging station located in Daverdisse (QD) for the 

years 2004–2009. We used the following equation to compute the flow at the study 

site (QL), in which AL and AD are the watershed areas of the study site and the 

Daverdisse station, respectively, expressed in square kilometres: QL = (AL/AD)×QD = 
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(195/302)×QD = 0.65×QD. For the Chicheron Brook, flow rates Q were estimated 

from water heights H recorded at a rectangular weir, on days when the trapping 

facility was checked over the years 2004–2009. We used the following calibration 

equation provided by E. Dupont (Earth and Life Institute, Croix du Sud 2 Box 

L7.05.14, 1348 Louvainla-Neuve, Belgium, personal communication, 2009): 

Q=√2g×0.2×√H3 for H < 0.22 m and Q =√2g×(0.2×√H3 +0.368×√(H-0.22)3) for H ≥ 

0.22 m, where g is the gravitational constant. 

Each time series was transformed into a weekly time series using the xts R package 

(Ryan and lrich, 2010). Holt-Winters method implemented in R (R Development 

Core Team, 2011) was used to apply a multiplicative seasonal model to each weekly 

time series in order to predict 29 years of data (2010–2039) from the 6 years of field 

data (2004–2009), and then use all 35 years of data as input in the DemGenTrout 

model. This exponential smoothing technique separates the time series t into three 

components, a level Lt, a trend Tt, and a seasonal index St: Xt = (Lt + Tt ×t)St, where 

Xt is an observation on the time series, Lt = α × (Xt/St - p) + (1 - α) × (Lt-1 + Tt-1), Tt = 

β × (Lt - Lt−1) + (1 - β) × Tt-1, and St = γ × (Xt/Lt) + (1 - γ) × St-p (α, β and γ are the 

smoothing parameters of level, trend, and seasonal index). The prediction function 

on h periods is given by: Xt+h = (Lt + h×Tt) × St-p+1+(h-1) mod p + et, where p is the 

period length equal to 52 weeks, and et is the random error component. For water 

temperatures in streams C and L, parameters were: α = 0.9076 and 0.6360, β = 

0.0000 and 0.0000, γ = 1.0000 and 0.0033, et was a normal random number with 

mean and standard deviation equal to 0.00 and 0.44, and to 0.00 and 1.22, 

respectively. For flow rates in streams C and L, parameters were: α = 0.0734 and 

0.0010, β = 0.0072 and 0.0000, γ = 0.3670 and 0.0000, et was a log-normal random 

number with mean and standard deviation equal to 1.00 and 3.00, and to 0.01 and 

0.03, respectively. 

An example description of input that drives model events (creation of new agents) and updates 

the environment during a simulation: 

[Chudzinska M, Ayllón D, Madsen J., Nabe-Nielsen J. 2016. Discriminating between possible 

foraging decisions using pattern-oriented modelling: The case of pink-footed geese in Mid-

Norway during their spring migration. Ecological Modelling 320: 299-315] 

Two input data files from external sources are used in the model: number of new 

super geese arriving to the model and distribution of habitat types within the 

modelled area. The number of arriving geese was assessed based on counts of geese 

on the roost sites in the years 2005-2012 and new geese arrive to the model as 

described in Section 2.2.3 and Appendix A. New habitat map is loaded to the model 

at the beginning of each period as described in Section 2.2.3 and Appendix A. The 

position, size and habitat type of each field was derived from regular habitat 

mapping conducted during field work in 2013 (Chudzinska et al., 2015) (Appendix 

A). 
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Back to guidance 

 

7. Submodels 

Example descriptions of submodels and their rationales: 

[Piou C, Prévost E. 2012. A demo-genetic individual-based model for Atlantic salmon 

populations: Model structure, parameterization and sensitivity. Ecological Modelling 231: 37-52] 

Smoltification: SM6. Individual parr need to undergo a smoltification process to be 

able to leave the river. It is well documented that this physiological, behavioural and 

morphological process is a function of individual growth (Thorpe, 1977) and that it 

is initiated much earlier than actually visible (see reviews of McCormick and 

Saunders, 1987; McCormick et al., 1998). It was therefore opted for an initiation 

time at the beginning of winter with an actual seaward migration at the beginning of 

summer (as in Thorpe et al., 1998). We used the probabilistic reaction norm 

depending on body length and adjusted by Buoro et al. (2010) on the Scorff to 

simulate this process. An individual parr j would become a future smolt in autumn 

following the relation:  

logit(P(Smj = 1)) = aSm × (Lj − LmidSm)  

where aSm and LmidSm (Table 2) were population parameters and Smj was the 

binary indicator state variable. The inter-individual variation for an identical L was 

considered in the probabilistic aspect of this implementation. 

[Lieder M, Asif FM., Rashid A. 2017. Towards Circular Economy implementation: An agent-

based simulation approach for business model changes. Autonomous Agents and Multi-Agent 

Systems 31: 1377-1402] 

Social network structure: By applying the concept of homophily the probability of 

information exchange between two individuals depends on the similarity of their 

socio-demographic factors [10]. In comparison to a distance-based network this 

brings the advantage that inter-agent connections can occur throughout the entire 

continuous modeling space since geographic distance is not the only measure for 

(dis)similarity. Furthermore, a network structure based on homophily appears more 

realistic as well as more practical since socio-demographic data are already applied 

in Sect. 4.6.1 (behavior curves) in order to characterize customer agents. So, the 

network creation is based on the social (dis)similarity s and defined as Euclidean 

distance D in all dimensions d (number of socio-demographic factors) [9]. Formally, 

the (dis)similarity between two customer agents x and y can be expressed as follows: 

… 

An example description of analyses that test, calibrate, and understand a submodel by itself: 
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[Railsback SF, Harvey BC, Ayllón D. Contingent tradeoff decisions with feedbacks in cyclical 

environments: testing alternative theories. Submitted paper] 

VIII.S Terrestrial predation trout mortality 

… 

VIII.S.7 Parameter values and submodel exploration 

The standard values for terrestrial predation parameters (which we recommend 

reviewing and adapting for all inSTREAM 7 applications) are in Table 11. To 

understand this complex submodel, we present plots showing its response to two key 

variables at a time. In the following figures, the standard parameter values (for large 

rivers) are used and trout are not hiding. Variables not explicitly varied in the plots 

have these standard values: turbidity = 5 NTU, sunlight-irradiance = 200 W/m2, 

reach-shading = 0.9, trout-length = 10 cm, trout-activity = “drift” or “search”, cell-

velocity = 20 cm/s, and cell-escape-dist = 200 cm. The value of cell-light is in all 

cases calculated from sunlight-irradiance, reach-shading, turbidity, and cell-depth 

(Sect. VIII.J) so has a standard value of 118 W/m2. 

An exploration of how terrestrial predation survival varies with depth, fish length, 

and light (Figure 16) illustrates how survival is relatively high for small trout but 

depends sharply on depth for trout above ~5 cm length. Decreasing light levels, from 

day to twilight to night, increase the survival probability but do not alter the shape of 

the relation between depth and survival. 

For an adult trout, depth and distance to escape cover have effects similar in 

magnitude (Figure 17). Predation risk can be reduced sharply by using habitat that is 

either deeper or closer to escape cover. 

Back to guidance 


